

SH30F9/SB0 Series User Guide

UG000003E 1 V1.0

SH30F9/SB0 Series User Guide

-32-bit MCU Based on ARM® CortexTM-M0+ Core

- Version 1.0

 SH30F9/SB0 Series User Guide

 2

Specification change record

Version Record Date

V1.0 Initial version 2024-10

 SH30F9/SB0 Series User Guide

 3

Documentation Instructions

This user guide is guidance manual for the application of SH30F9010/30F9011/30F9810
(hereinafter referred to as SH30F9/SB0) microcontroller products. It mainly contains basic
information and special attentions on how to useSH30F9/SB0 series products, including the
configuration and use method of typical working mode of functional modules, and provides
basic operation methods in the form of sample code.

This user guide does not contain a detailed description of product functions and technical
features, including module internal structure, complete function introduction, pin number
and distribution, electrical characteristics, package information, etc., which are provided in
the product data manual.

This sample code of user guide uses direct register operation method, and does not use
encapsulated peripheral library function operation method. For product development based
on peripheral library, please refer to "SH30F9XX_SB0-STD_LIB_MANUAL.chm" instruction
document in the SH30F9/SB0 series demo.The structure used in the routine is defined in
the header file "sh30f9xx_sb0.h ".

 SH30F9/SB0 Series User Guide

 4

Contents

SH30F9/SB0 Series User Guide .. 1

Specification change record ... 2

Documentation Instructions ... 3

1. RAM ... 9

1.1. Overview ... 9

1.2. Programming Setting ... 9

2. NVIC ... 9

2.1. Overview ... 9

2.2. Programming Setting ... 9

2.2.1. Interrupt configuration basis .. 9

2.2.2. Enable and disable interrupt .. 9

2.2.3. Interrupt pending and releasing ... 10

2.2.4. Interrupt priority .. 10

2.2.5. Interrupt / fault response sequence .. 10

2.2.6. Interrupt / fault return .. 10

2.2.7. Nested interrupts .. 11

2.2.8. Tail interrupt .. 11

2.2.9. Late interrupt ... 11

3. Power, clock and reset .. 11

3.1. Overview ... 11

3.2. Programming Setting ... 12

3.2.1. Power ... 12

3.2.2. Clock .. 12

3.2.3. Reset .. 13

4. GPIO ... 13

4.1. Overview ... 13

4.1.1. GPIO mode .. 13

4.1.2. Multiplexing for digital peripherals ... 14

4.1.3. Multiplexing for analog peripherals .. 15

4.1.4. Full close mode .. 15

4.1.5. Debug interface .. 15

4.1.6. Other notes ... 16

5. Flash&EEPROM... 16

5.1. Overview ... 16

5.2. Programming Setting ... 16

5.2.1. Flash Control Register Unlocking ... 17

 SH30F9/SB0 Series User Guide

 5

5.2.2. Flash operation timer function ... 18

5.2.3. Flash(E2\OTP) Erasing and Programming .. 20

5.2.4. Flashcontrol register locking ... 20

5.3. Flash (E2\OTP) erase programming flow chart .. 20

5.3.1. Mass erase of main program area .. 20

5.3.2. Main program area sector erase ... 22

5.3.3. Main program area programming .. 27

5.3.4. EEPROM-like memory area erase programming .. 31

5.3.5. OTP area programming ... 31

5.4. Anti-interference measures for programming/erasing ... 31

6. CRC... 32

6.1. Overview ... 32

6.2. Programming Setting ... 32

6.2.1. Generating polynomials ... 32

6.2.2. Input data processing ... 32

6.2.3. Result processing ... 32

6.2.4. Operation trigger .. 32

6.2.5. Result obtaining ... 32

7. WDT ... 33

7.1. HWDT ... 33

7.1.1. Overview.. 33

7.1.2. HWDT Programming Setting .. 33

7.1.3. HWDT Application examples .. 33

7.2. WWDT .. 34

7.2.1. Overview.. 34

7.2.2. WWDT Programming Setting ... 34

7.2.3. WWDT application examples .. 34

8. EXTI ... 35

8.1. Overview ... 35

8.2. Programming Setting ... 35

8.2.1. Edge trigger mode selection .. 35

8.2.2. Software triggered interrupt ... 35

8.2.3. External interrupt line selection ... 35

8.2.4. Matters needing attention .. 36

9. System configuration module (SYSCFG) .. 36

9.1. Overview ... 36

9.2. Programming Setting ... 36

 SH30F9/SB0 Series User Guide

 6

9.2.1. BOD ... 36

9.2.2. LVR .. 36

9.2.3. NMI interrupt switch ... 36

9.2.4. Crystal oscillator pins are used as GPIO ... 37

9.2.5. Simulation pins are used as GPIO ... 37

9.2.6. The peripherals run in debug mode ... 37

9.2.7. Low-power consumption mode ... 38

10. PCA ... 39

10.1. Overview ... 39

10.2. Programming Setting ... 40

10.2.1. IO setting ... 40

10.2.2. Clock setting .. 40

10.2.3. PCA count mode setting .. 41

10.2.4. PCA mode setting .. 41

10.2.5. Matters needing attention .. 41

11. PWM ... 42

11.1. Overview ... 42

11.2. Programming Setting ... 42

11.2.1. IO setting ... 42

11.2.2. Protection setting ... 42

11.2.3. Module setting ... 42

11.2.4. Matters needing attention .. 43

12. ADC .. 43

12.1. Overview ... 43

12.2. Programming Setting ... 44

12.2.1. ADC clock setting.. 44

12.2.2. ADC channel IO port function setting ... 44

12.2.3. ADC sampling rate configuration .. 44

12.2.4. ADC conversion mode configuration .. 44

12.3. Matters needing attention .. 45

13. TIMER .. 46

13.1. Overview ... 46

13.2. Programming Setting ... 46

13.2.1. Basic timing application .. 46

13.2.2. Square wave with adjustable output frequency ... 46

13.2.3. Matters needing attention .. 46

14. UART .. 47

 SH30F9/SB0 Series User Guide

 7

14.1. Overview ... 47

14.2. Programming Setting ... 47

14.2.1. Sending .. 47

14.2.2. Receiving ... 47

14.2.3. IO setting ... 48

14.2.4. LIN mode ... 48

14.2.5. Interrupt ... 48

14.2.6. Parity check ... 48

14.2.7. Error flag .. 48

14.2.8. Other notes ... 48

15. SPI ... 48

15.1. Overview ... 49

15.2. Programming Setting ... 49

15.2.1. Sending .. 49

15.2.2. Reveiving ... 49

15.2.3. IO setting ... 50

15.2.4. Fast slave mode.. 50

15.2.5. Intterupt.. 50

15.2.6. Error flag .. 51

16. TWI ... 51

16.1. Overview ... 51

16.2. TWI bus setting ... 51

16.2.1. I/O setting .. 51

16.2.2. Baud rate configuration ... 51

16.2.3. Communication address configuration .. 51

16.3. Four basic communication modes ... 52

16.4. TWI Interrupt and timeout... 52

17. Aappendix ... 54

17.1. Aappendix 1：Function location and debugging method in KEIL MDK 54

17.1.1. Debugging the entire program in RAM ... 54

17.1.2. Put the critical program into RAM to run .. 57

17.1.3. Fix a function to a certain position .. 61

17.2. Appendix 2: Automatically export similar data into a table .. 62

17.2.1. Define an output macro ... 62

17.2.2. Export call function ... 62

17.2.3. Table lookup method ... 63

17.3. Appendix 3: Fixing variables to a location in RAM ... 64

 SH30F9/SB0 Series User Guide

 8

17.3.1. Specify the address directly at the variable definition ... 64

17.3.2. Specify the section directly in the variable definition ... 64

17.3.3. Specify all variables in the file to a fixed location .. 64

17.4. Appendix 4: SH30F9010 Function Boardschematic diagram ... 64

17.5. Appendix 5:SH30F9010 Function Board .. 66

 SH30F9/SB0 Series User Guide

 9

1. RAM

1.1. Overview

The SH30F9/SB0 series chip has only one SRAM. SRAM is located in the 0x20000000
area. It is mainly used to store program variables, and can also run program code. It has a
write protection function, which can protect the code in SRAM from being tampered with
accidentally.

1.2. Programming Setting

The SRAM write protection of SH30F9/SB0 series chip takes 1K Bytes as a sector, and one
protection bit corresponds to one sector, which is controlled by the SRAMLOCK register in
the SYSCFG module.

【Note】 Writing to the write-protected SRAM will trigger a Hardfault exception.

【Note】 To run a specific program in SRAM, you need to identify the program segment in

the program, and specify the address of the identified segment in the Linker configuration
file to SRAM. Please refer to Appendix 1 for further information.

2. NVIC

2.1. Overview

The NVIC is the main component of the Cortex-M0+, which is tightly integrated with the
CPU, reducing interrupt latency and allowing incoming interrupts to be handled efficiently. In
addition to the exceptions provided by Cortex-M0+,The SH30F9/SB0 series chip also has
32 maskable interrupts and 4 programmable interrupt priorities (using 2-bit interrupt
priority).

2.2. Programming Setting

2.2.1. Interrupt configuration basis

Each interrupt has an interrupt number, which is the identity of all interrupt operations and is
defined in the chip header file. The initial address of the interrupt vector table is determined
by the register VTOR, and this register is 0 when reset. The interrupt vector table is defined
in startup_sh30f9xx_sb0_keil.s, and a default processing function is defined for each
interrupt. When you need to replace this processing function, you only need to define an
interrupt service function with the same name in the interrupt vector table in the code. There
is no need to make any modification to startup_sh30f9xx_sb0_keil.s, the compiler will
automatically replace it with a custom function.

2.2.2. Enable and disable interrupt

When enabling an interrupt, first set the interrupt enable bit inside the module to 1, and then
set the interrupt enable bit in the NVIC to 1. When disabling, as long as any one of them is
disabled, the interrupt service routine will not be executed. In addition, the special function
register PRIMASK can more conveniently screen and interrupt. This register can be

 SH30F9/SB0 Series User Guide

 10

accessed by MSR, MRS instructions.

PRIMASK: interrupt mask register, only 1 bit. When set to 1, all maskable interrupts are
masked.

2.2.3. Interrupt pending and releasing

The state of the interrupt can be controlled by the interrupt pending register (SETPEND)
and the interrupt pending clear register (CLRPEND). So as to realize the function of
triggering an interrupt by the program.

【Note】 The operation of writing the interrupt pending register has no effect on the

suspended or disabled interrupts.

【Note】 The PEND register in NVIC will be automatically set and cleared to 0, so there is

no need to modify it under non-special circumstances.

2.2.4. Interrupt priority

The external interrupt of SH30F9/SB0 series chip has a corresponding priority register,
each register has 8 bits, and the Cortex-M0+ series can only use the highest 2 bits.

2.2.5. Interrupt / fault response sequence

Push: Push 8 registers into the stack (xPSR, PC, LR, R12, R3, R2, R1, R0)

Get vector: find out the corresponding service program entry address from the vector table

Update registers: select stack pointer MSP/PSP, update stack pointer SP, link register LR,
program counter PC

SP: The stack pointer (PSP/MSP) will be updated to the new position when it is pushed into
the stack. After the execution of the service routine, the access to the stack will be taken
care of by the MSP.

PSR: The IPSR field (located in the lowest part of the PSR) will be updated with the
exception number of the new response.

PC: After the vector is fetched, the PC will point to the entry address of the service routine.

LR: The usage of LR will be reinterpreted, and its value will be updated to a special value
called "EXC_RETURN", and used when interrupt/abnormal return.

Update NVIC register: interrupt pending bit is cleared, active bit is set.

2.2.6. Interrupt / fault return

A return sequence is required after the interrupt/fault service program is executed. There
are three ways to trigger the return sequence

BX <reg> when LR stores EXC_RETURN, use BX LR to return.

POP {PC} / POP {…,PC} EXC_RETURN is stored in the stack when out of the PC stack.

LDR / LDM loads PC as target register into EXC_RETURN.

 SH30F9/SB0 Series User Guide

 11

Return sequence

POP: Restore the register of the previous stack

Update NVIC register: Interrupt active bit is cleared by hardware. For EXTI, if the interrupt
input is set to be valid again, the pending bit will be set again, and a new interrupt response
sequence will start again.

2.2.7. Nested interrupts

The NVIC of the CM0+ core supports interrupt nesting. It is necessary to configure the
interrupt priority to control the nesting of interrupts.

【Note】 The capacity of the main stack should maintain a safe value, and each nesting

level needs at least 8 words of space.

【Note】 The same interrupt does not allow re-entry.

2.2.8. Tail interrupt

If the priority of the pending interrupt is higher than that of all the push stack interrupts, the
processor performs tail chaining. Tail-chaining means that when exiting ISR and entering
another interrupt, the processor skips the push stack and pop stack operations of 8
registers, because it has no effect on the contents of the stack. Therefore, it is possible to
implement back-to-back processing without redundant state saving and recovery
instructions between two interrupts.

2.2.9. Late interrupt

If the previous ISR has not entered the execution phase, and the priority of the late interrupt
is higher than that of the previous interrupt, the late interrupt can preempt the previous
interrupt. The response to late interrupt makes it necessary to perform a new vector
address and ISR prefetch operation. Late interrupt does not save the state because the
state has been executed by the original interrupt.

3. Power, clock and reset

3.1. Overview

Power, clock and reset circuit are the core of industrial control chip design, and also the
guarantee of reliability and anti-interference ability.

In terms of power, it supports 2.0V-5.5V power supply range, which is a real wide voltage
power supply MCU. Besides, low voltage protection (LVR) and brownout detection (BOD)
conventional protection circuits are added.

In terms of clock, it supports HSI, HSE, LSI, LSE and PLL clock sources. HSI clock can
reach 0.3% accuracy at room temperature, which can replace crystal oscillator as
high-precision clock source in most control applications.

In terms of reset circuit, it supports power on reset, independent pin reset, low voltage reset,

 SH30F9/SB0 Series User Guide

 12

watchdog reset and internal software reset, with various and perfect reset methods.

3.2. Programming Setting

3.2.1. Power

【Note】There will be a warm-up (stabilization) time for the power supply, so it is

recommended to reserve 15ms (a certain margin on the basis of 11ms). The power supply
can be preheated to about 1ms when it wakes up or reset from shutdown mode, because it
does not involve power on again.

【Note】BOD is a flexible brownout detection circuit, which supports down detection, rise

detection and bidirectional detection. It can also query the high and low status of current
voltage and set voltage. After BOD is generated, it can apply for BOD interruption or NMI
interruption. The latter is set by IEN_ BOD@SYSCFG_ SAFR control bit.

【Note】 BOD interrupt cannot wake up STOP mode, it is recommended not to try to use

BOD interrupt to wake up STOP.

【Note】 In order to improve the anti-interference ability, the BOD is designed with a

debouncing function to prevent BOD errors from occurring due to interference and glitches
on VDD.

【Note】 There are four options for LVR. The LVR setting should refer to the VDD voltage

and be higher than the minimum working voltage of the chip. For example, VDD=5V, you
can set LVR=4.1V, VDD=3.3V, you can set LVR=2.8V. The LVR is designed with hysteresis
and debouncing functions to prevent LVR errors from occurring due to interference and
burrs on VDD.

【Note】 BOD is turned on and set the BOD threshold voltage by the internal register, and

LVR is also turned on and set the LVR voltage by the internal register.

3.2.2. Clock

【Note】In addition to external crystal oscillator, HSE can also be filled with clock from

XTAL1 pin, which can be filled with square wave or sine wave.

【Note】All clock sources should be switched after the corresponding READY bit is set.

【Note】HCLK、PCLK0 and PCLK1 have the maximum frequency limit, which should be

noted when configuring the bus clock.

【Note】CSM is disabled by default and can be enabled through the configuration register.

After CSM occurs, the system automatically switches to internal clock operation in 8
frequency division, and applies for NMI interrupt (enabled by the
IEN_CSM@SYSCFG_SAFR control bit), and some system protection work can be done
during NMI interrupt.

【Note】After CSM occurs, except for HSECSMF being set, some control bits of RCC will

not be cleared, such as HSEON, LSION, SW, SWS all keep the original value, that is, the
system clock has been switched at this time to HSI/8clock, but SW still maintains the
original setting.

 SH30F9/SB0 Series User Guide

 13

【Note】The system clock selects HSE, and when the CSM module is turned on, HSI must

not be turned off, otherwise the CSM will work abnormally.

【Note】 After CSM occurs, although the system clock has automatically switched to HSI/8,

in order to maintain system stability, the AHB bus division factor must be set to 8 and the
clock must be switched to HSI. After the failed clock is restored (HSERDY flag is set), clear
the CSM flag, and the system clock will switch back to the abnormal pre clock. Then,
change the AHB bus division factor back to the original set value.

【Note】SysTick uses HCLK/8 as the clock source by default, and the period constant is

fixed at 60000. When HCLK=48MHz, the SysTick period is 10ms. If HCLK is other main
frequency, the corresponding period will also change automatically. The calculation method
is 60000*8/ HCLK.

【Note】The reset of each module is set by the software, and the hardware is automatically

cleared after the reset is completed. After starting the reset, it is required to wait for a HCLK
clock before reading the reset parameters.

3.2.3. Reset

【Note】The SH30F9/SB0 series has a complete power-on reset circuit, the key (pin) reset

is not necessary, the key (pin) reset is reserved for flexibility and functional considerations,
for example, after all the SWD debugging interfaces are multiplexed as GPIO ports To
restore the debugging function, the key (pin) reset intervention is required, which is
described in detail in the SYSCFG module.

【Note】 There is a power warm-up time after power-on reset and low-voltage reset, which

is calculated as 18ms, while button (pin) reset, watchdog reset, and software reset only
need to reserve about 1ms warm-up time.

4. GPIO

4.1. Overview

4.1.1. GPIO mode

GPIO mode is the basic working mode of I/O. After power-on, all I/O ports are in full-off
mode (AF = 0) except the debug interface (SWD port). If you need to use the GPIO function,
please set it to The relevant AF is set to 1, and it is recommended to set AF to 0 for unused
GPIO ports.

GPIO mode has three basic working modes: GPIO input, GPIO output (push-pull), GPIO
output (open drain).

GPIO input: MODER=0b, PHDRx=0b/1b, the read access to the input register IDR can get
the level status of the I/O port.

【Note】 The I/O port level sampling is triggered only by the read operation, and the IDR

keeps the last sampling value at other times.

GPIO output (push-pull): MODER=1b, OTYPE=0b, ODRVR_SINKx=0b/1b, the write

 SH30F9/SB0 Series User Guide

 14

operation to the output register ODR will change the I/O port level, write 1 to activate PMOS,
output high level, write 0 to activate NMOS, output low level;

GPIO output (open drain): MODER=1b, OTYPE=1b, ODRVR_SINKx=0b/1b, writing 0 to the
output register ODR can activate NMOS, output low level, write 1 cannot activate PMOS,
cannot output high level, in High resistance state;

【Note】 In the open-drain mode, high-level output can be obtained through external

pull-up, but the external pull-up should not exceed the working voltage of the chip, and in
extreme cases, it should not exceed VDD+0.3V.

【Note】 Adjusting ODRVR_SINKx in output mode can change the capability of sinking

current. Among them, the 70mA sinking current capability is only provided by some 8 pins,
which are PB2-PB9/PC3~PC10. Limited by the chip GND maximum current limit of 200mA,
only one channel of 200mA sink current can be started at a time in the application. If there
are multiple channels, it can only be started in time-sharing by scanning.

4.1.2. Multiplexing for digital peripherals

Digital peripherals can select the mapped I/O port through the AF register. The
SH30F9/SB0 series chip supports powerful pin remapping. The same peripheral can be
mapped to I/O ports in different positions, which is convenient for system wiring and
function combination.

The digital peripheral will control the input and output of the I/O port, that is, after an I/O port
is mapped to a digital peripheral, the user does not need to configure the MODER register.
In addition, other function options of the I/O port need to be configured by user software,
such as pull-up, push-pull/open drain, and output drive capability.

【Note】 The configuration of digital peripherals and I/O port configuration does not have a

strict order. Generally speaking, it is recommended to configure peripherals first for output
ports and then I/O ports, and for input ports or bidirectional ports to configure I/O ports first
and then configure peripherals. The former is because the output port of some peripherals
will show a high-impedance state or a level before it is turned on, and it will show a level
after it is turned on. If the I/O port is mapped in advance, the level change may have an
impact on the external circuit. The latter is for the peripheral input port, which requires a
deterministic level before it is turned on, so the I/O port needs to be pre-configured to avoid
peripheral misoperation caused by level changes.

The configuration sequence can be simply summarized as:

Output peripherals: first configure the peripherals, turn on the peripherals, then configure
the I/O port pull-down, output mode, and finally switch to the peripherals with AF.

Input peripherals: first configure the pull-down and output mode of the I/O port, then AF
switches to the peripheral, and finally configure and turn on the peripheral (if the peripheral
has an enable switch, it can be used as a peripheral synchronously during I/O configuration
configuration, the last step is to turn on the peripherals).

When mapped as a digital peripheral, the GPIO output will be disconnected (actually only
the ODR register output will be disconnected), but the GPIO input will not be closed, that is,
the I/O port level can always be sampled through the IDR.

 SH30F9/SB0 Series User Guide

 15

The mapping between peripherals and I/O ports can be easily determined through the
"Multiplex Function Mapping Table".

【Note】The SH30F9/SB0 series chip does not prohibit overlapping mapping. For example,

RXD0 can be mapped to PA4, PC3, PC4, PC5, PD0, and PD1 at the same time. Once this
is done, the received signals of these 6 pins will be sent to RXD0, causing signal disorder.
Application This configuration should be avoided. In the same way, TXD0 hardware also
allows this kind of overlapping mapping, which should be avoided consciously by the user.

4.1.3. Multiplexing for analog peripherals

GPIO input and output channels are closed when mapped to analog peripherals. At this
time, if the user reads the IDR register, it will read 0.

It is meaningless to configure the MODER, OTYPE, and ODRVR registers for analog
peripherals, but it is allowed to configure the PUPDR register to construct a pull-up on the
I/O port.

【Note】 The analog peripheral requires the I/O port to be switched to the relevant AF first,

and then the analog peripheral is turned on.

Note: This is different from digital peripherals. Digital peripherals are only recommended,
and analog peripherals are required.

4.1.4. Full close mode

The full close mode will cut off the input and output channels, which can completely
eliminate the leakage problem that exists when the I/O port is configured as an input floating.
For simplicity, unused I/O ports can be configured as full close during application.

During power-on reset, all I/O ports except the SWD port are in the fully closed state, and
enter the default state (GPIO input and output are all closed) after the reset is completed.

4.1.5. Debug interface

Two-wire SW debug interface (SWD interface): Both SWDIO and SWCLK can be
multiplexed as GPIO mode.

After the system is powered on and reset, it is used as the debug interface by default. To
reuse it as GPIO mode, it needs to be modified through the SWJCFG@SYSCFG_SAFR
register.

【Note】 The GPIO mode here includes the digital peripheral mode, collectively refers to

the "non-debugging interface" mode, which can be used as a digital peripheral mapping
port.

【Note】 Please refer to the definition of the OSCCFG@SYSCFG_SAFR register for the

multiplexing of the oscillator interface XTAL1/XTAL2. The default state is that the input and
output are all off when powered on.

【Note】 The two control bits SWJCFG and OSCCFG in the SYSCFG_SAFR register can

only be set once after reset, and once set in the program, they cannot be changed.

 SH30F9/SB0 Series User Guide

 16

4.1.6. Other notes

【Note】 The I/O configuration operation has a corresponding lock/unlock function, and the

configuration information cannot be modified after being locked.

GPIOB ->LCKR.V32 = 0x5AA5FFFF; // lock PB config
GPIOB ->LCKR.V32 = 0x5AA50000; // unlock PB config

【Note】 There are two ways to set and clear the port: BSRR and ODR, and the set and

clear operation of ODR is realized through BSRR. When BSRR is valid for setting and
clearing a certain bit at the same time, setting has high priority.

GPIOB->BSRR.BIT.BS = 0x8000; // set PB15 = 1
GPIOB->BSRR.BIT.BR = 0x8000; // set PB15 = 0
GPIOB->ODR |= 0x8000; // set PB15 = 1
GPIOB->ODR &= 0x7FFF; // set PB15 = 0

【Note】 When using the GPIOx->ODR register, you should pay attention to turn off the

interrupt before use, and turn on the interrupt after the setting is completed. It is
recommended that customers use the GPIOx->BSRR register to set or clear the IO

【Note】 TTL level input function. This function is mainly aimed at the level matching

problem when the external port working at TTL level is connected to this chip. The TTL level
input option changes the input high and low voltage thresholds (VIH3, VIL3).

【Note】 The TTL level input function is still valid in STOP mode.

5. Flash&EEPROM

5.1. Overview

The SH30F9/SB0 series chip has a built-in programmable Flash main program storage
area of up to 256K, For detailed information, please refer to the product information section
in the specification sheet. each sector is 1024 bytes, and 256 sectors can be erased
individually. After the erase operation of the main storage area, each 16-bit or 32-bit can
only be programmed once, that is, if each bit of the programmed 16-bit or 32-bit data is not
0, it cannot be programmed again, otherwise the corresponding error flag set to 1.

The 4KB built-in EEPROM-like storage area can store data, each sector is 1024 bytes, and
each sector can be erased individually.

The 1KB OTP area is used to store factory initialization data. It should be noted that once
the data in the OTP area is written, it cannot be erased.

The main program area in Flash can be prevented from being illegally read by setting read
protection; it is also possible to set write protection for each sector of the Flash storage area
to prevent it from being accidentally changed when the program runs away. The basic unit
of write protection is 8 sectors as a protection unit.

5.2. Programming Setting

 SH30F9/SB0 Series User Guide

 17

The operation procedures of Flash, EEPROM, and OTP areas are basically the same,
roughly divided into the following steps:

⚫ Unlock the corresponding operation register

⚫ Set the Flash operation timer

⚫ Flash (E2\OTP) erase programming configuration

⚫ Lock the corresponding operation register

【Note】 Before erasing and programming the Flash (E2\OTP) memory, please feed the

WDT to the dog, and the LVR function is turned off to avoid reset during the operation. and
turn off the total interrupt. After the operation is completed, turn on the total interrupt.

5.2.1. Flash Control Register Unlocking

After the system is reset, the Flash memory operation register enters the locked state, so
the Flash memory operation register needs to be unlocked before erasing and
programming the Flash. Different Flash storage areas have different unlock registers, and
operations in different areas need to unlock the corresponding registers. To unlock Flash,
you need to write two unlock values in sequence to the corresponding unlock register. The
first unlock value is the initial unlock value, and the second unlock value is the unlock value
of a single or multiple operations; the first key value is written incorrectly or The second key
value write error will not unlock the corresponding area of the Flash and will generate a
HardFault; if any area is in the unlocked state, unlocking the unlock register will also
generate a HardFault. There are also two situations for unlocking the Flash. One is that a
single operation can be performed on the Flash after unlocking, and the other is that
multiple operations can be performed on the Flash after unlocking. If the Flash memory
operation register is in the unlocked state, the flash memory area can be erased and
programmed by controlling FLASH_CR.

Unlock value and description of each unlock register

Register Function
Flash Initial

unlock value

Single

operation

unlock value

Multiple

operations

unlock value

Instructions

FLASH_

MKYR

Unlock

main

program

area

0x8ACE 0246 0xC3C3 C3C3 0xB4B4 B4B4

Directly access

through programs

running in RAM,

programs in the main

program area,

programs in the Boot

area or using

debugging tools

FLASH_

E2KYR

Unlock

EEPROM

like area of

0x9BDF 1357 0xC3C3 C3C3 0xB4B4 B4B4

Directly access

through programs

running in RAM,

 SH30F9/SB0 Series User Guide

 18

special

information

area

programs in the main

program area,

programs in the Boot

area or using

debugging tools

FLASH_

IKYR

Unlock the

code

protection

block,

customer

block, and

OTP area of

the special

information

area

0xABCD 5678 0xC3C3 C3C3 0xB4B4 B4B4

The code protection

area, customer

information area and

OTP area can be

implemented by

programs running in

RAM, programs in the

main program area,

programs in the Boot

area, or direct access

to the Flash operation

registers using a

debugging tool; while

the Boot area can

only be implemented

by using debugging

The tool directly

accesses the Flash

operation register to

achieve this.

5.2.2. Flash operation timer function

The Flash control module has an operation timer. The count value of the Flash operation
timer is based on the system clock as the clock source. The count value of the Flash
operation timer must be less than the upper limit value of the Flash operation timer and
greater than zero before storing data in the Flash. Area to operate, or write a 32bit/16bit
data to the destination address. If a Flash operation is started, that is, when bit
STRT@FLASH_CR is set to 1 or a write operation to Flash is started, the count value of the
Flash operation timer is not within the valid time window, the Flash operation is not
executed, and the bit PGWERR@FLASH_SR is set to 1. The specific usage of the Flash
operation timer can refer to the figure below.

It should be noted that the CNTEN@FLASH_CNTCR bit controls whether the operation
timer starts counting down. When the CNTEN@FLASH_CNTCR bit is 1, the timer starts
counting down; when the CNTEN@FLASH_CNTCR bit is 0, the Flash operation timer
counts unchanged, so , as long as the count value of the Flash operation timer is not

 SH30F9/SB0 Series User Guide

 19

greater than the upper limit of the Flash operation timer, the Flash operation can be
performed normally.

Is the FLASH_CNT window counter within the valid range of the time

window? (IC hardware implementation)

Is BSY@FLASH_SR bit set to 0?

Yes

No

Set the initial value of the FLASH_CNT window

counter, set the FLASH_UPCNT counter upper limit

bit CNTEN@CNTCR to 1, and start the timer

Start

……

FLASH erase/program operation

setting

STRT@FLASH_CR bit is set to 1

or

a 32bit/16bit data is written to target address.

Yes

End

No

OPERR@FLASH_SR bit is set to 1

(IC hardware implementation)

Is the FLASH_CNT window counter within the valid

range of the time window?

(IC hardware implementation)

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

Flash Operation Timer Flowchart

 SH30F9/SB0 Series User Guide

 20

5.2.3. Flash(E2\OTP) Erasing and Programming

After the Flash, EEPROM, OTP area are operated, and then the flash controller is unlocked
and the flash operation timer is set, the flash control register needs to be configured. The
options to be configured include:

⚫ Flash operation commandword: CMD@FLASH_CR

0xE619: main block sector erase (MSE)

0x6E91: main block programming (MPG)

0xB44B: E2Prom block programming (E2PG)

0x4BB4: E2Prom block sector erase (E2Prom-like) (E2SE)

0xF00F: OTP block programming (OPG)

⚫ Program operation bit width selection：PSIZE@FLASH_CR

0: 32-bit programming simultaneously

1: 16-bit programming simultaneously

⚫ Sector erase selection: SNB@FLASH_CR1

00000000: Sector 0

00000001: Sector 1

00000010: Sector 2

……..

11111110: Sector 254

11111111: Sector 255

Note: This bit is only valid when the main program area is erased by sector or the
EEPROM-like area is erased by sector. When the main program area is erased by sector,
the size of each sector is 1024 bytes; the EEPROM-like area is During sector erasing, the
size of each sector is 1024 bytes.

⚫ Starting flag bit: STRT@FLASH_CR

When the operation command word is erase, an operation will be triggered when the bit is
'1'; when the operation command word is programming, an operation will be triggered when
a 32-bit word/16-bit half word is written to the destination address. This bit can only be set to
'1' by software and cleared to '0' when BSY@FLASH_SR becomes '1'. When
BSY@FLASH_SR is cleared '0', it means the operation is over. At this time, you need to
query the status bits in the FLASH_SR register to determine whether the operation is
performed normally. If there is an error, the corresponding error flag will be set to 1.

5.2.4. Flashcontrol register locking

If the unlocking mode of flash control register allows multiple operations, the corresponding
flash control register must be relocked to prevent the flash from being misoperated.

5.3. Flash (E2\OTP) erase programming flow chart

5.3.1. Mass erase of main program area

 SH30F9/SB0 Series User Guide

 21

The Flash operation provides a full-chip erase function, which can erase the contents of the
main memory block area. Specific steps are as follows:

(1) Turn off the total interrupt;

(2) Feed the WDT to the dog, and the LVR function is turned off to avoid reset during
operation;

(3) FLASH_MKYR sequentially writes the Flash unlock value and single operation unlock
value to ensure that the Flash main program area is not locked;

(4) Check the bit BSY@FLASH_SR to determine whether the Flash memory is running;

(5) When the bit BSY@FLASH_SR is 0, write the mass erase command word in the Flash
main program area to the FLASH_CR register;

(6) Start the chip erase operation by setting bit STRT@FLASH_CR to 1;

(7) Check the bit BSY@FLASH_SR to determine whether the erase command has been
executed;

(8) When the bit BSY@FLASH_SR is 0, the operation is completed;

(9) Feed the WDT to the dog, and the LVR function is turned on;

(10) Turn on the total interrupt.

The bit EOP@FLASH_SR indicates the end of the operation, and this bit is 1, indicating that
the operation is completed. All Flash data is reset to 0x0000 0000 after erasing.

The flow chart is as follows:

 SH30F9/SB0 Series User Guide

 22

Unlock target flash

(single operation)

Is BSY@FLASH_SR bit set to 0?

Write the main flash program area total erasure

instruction word to the FLASH_CR register

Yes No

Is MNLCK@FLASH_CR bit set to 0?

Is BSY@FLASH_SR bit set to 0?

Yes

STRT@FLASH_CR bit is set to 1

No

Yes

No

End

Start

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

Mass erase of the main program area

Note: Before running the program in the main program area of Flash to execute the mass
erase, the mass erase protection byte (Addr: 0x0FFF8020) in the main program area needs
to be programmed to 0x01, and then the erase operation can be performed.

5.3.2. Main program area sector erase

Each sector of the Flash memory can be erased independently without affecting the
contents of other sectors. The steps of flash operation to erase sectors are as follows:

(A) Erase a certain sector individually

(1) Turn off the total interrupt;

 SH30F9/SB0 Series User Guide

 23

(2) Feed the WDT to the dog, and the LVR function is turned off to avoid reset during
operation;

(3) FLASH_MKYR sequentially writes the Flash unlock value and single operation unlock
value to ensure that the Flash main program area is not locked;

(4) Check the bit BSY@FLASH_SR to determine whether no Flash memory is running;

(5) When the bit BSY@FLASH_SR is 0, write the sector erase command word in the main
program area and the sector number to be erased to the FLASH_CR and FLASH_CR1
registers respectively;

(6) Start the sector erase operation by setting the bit STRT@FLASH_CR to 1;

(7) Check the bit BSY@FLASH_SR to determine whether the erase command has been
executed;

(8) When the bit BSY@FLASH_SR is 0, the operation is completed;

(9) Feed the WDT to the dog, and the LVR function is turned on;

(10) Turn on the total interrupt.

The flow chart is as follows:

 SH30F9/SB0 Series User Guide

 24

Unlock target flash

 (single operation)

Is BSY@FLASH_SR bit set to 0?

Write the sector erase command word in the Flash main

program area, and the sector numbers are respectively to the

FLASH_CR and FLASH_CR1 registers

Yes
No

Is MNLCK@FLASH_CR bit set to 0?

Is BSY@FLASH_SR bit set to 0?

Yes

STRT@FLASH_CR bit is set to 1

No

Yes

No

End

Start

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

The main program area is erased by sector (single sector)

 SH30F9/SB0 Series User Guide

 25

(B) Erase multiple sectors

(1) Turn off the total interrupt;

(2) Feed the WDT to the dog, and the LVR function is turned off to avoid reset during
operation;

(3) FLASH_MKYR sequentially writes the Flash unlock value and multiple operation unlock
values to ensure that the Flash main program area is not locked;

(4) Check the bit BSY@FLASH_SR to determine whether no Flash memory is running;

(5) When the bit BSY@FLASH_SR is 0, write the sector erase command word and sector
code in the main program area to FLASH_CR and FLASH_CR1 respectively

device;

(6) Start the sector erase operation by setting the bit STRT@FLASH_CR to 1;

(7) Check the bit BSY@FLASH_SR to determine whether the erase command has been
executed;

(8) Repeat (5)-(7) to erase other sectors;

(9) Bit MNLCK@FLASH_CR is set to 1, and the operation is completed;

(10) Feed the WDT to the dog, and the LVR function is turned on;

(11) Turn on the total interrupt.

The operation flow chart is as follows:

 SH30F9/SB0 Series User Guide

 26

Unlock target flash

(multiple operation)

Is BSY@FLASH_SR bit set to 0?

Write the flash main program area sector erase command word and sector

number to FLASH_CR and FLASH_CR1 registers respectively

Yes No

Is MNLCK@FLASH_CR bit set to 0?

Is BSY@FLASH_SR bit set to 0?

Yes

STRT@FLASH_CR bit is set to 1

No

Yes

No

MNLCK@FLASH_CR bit is set to 1

End

Start

Whether there are other sectors that need to be

erased

Yes

No

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

The main program area is erased by sector (multiple sectors)

When the target erased sector is used to fetch instructions or access data, the
corresponding erase operation is invalid, but the Flash operation will not provide any
notification, so it is necessary to ensure the correctness of the target erased sector address.
Bit EOP@FLASH_SR heralds the end of operation.

 SH30F9/SB0 Series User Guide

 27

5.3.3. Main program area programming

Flash operation provides a 32-bit word/16-bit half-word programming function to modify the
content of the Flash main memory block. 32-bit/16-bit can be written into the Flash main
program area each time, and the address must be aligned according to 32-bit/16-bit. If it is
not aligned, the corresponding operation is invalid and the relevant error flag is set to 1.
When the FLASH_CR register operation command word is set to program in the main
program area, writing a word or half word at a Flash address will start a program. During the
programming process (the bit BSY@FLASH_SR is '1'), any operation of reading and writing
Flash will cause the CPU to suspend until the end of this Flash programming.

The following steps show the word program operation register procedure.

(A) Single word or half word programming

(1) Turn off the total interrupt;

(2) Feed the WDT to the dog, and the LVR function is turned off to avoid reset during
operation;

(3) FLASH_MKYR sequentially writes the Flash unlock value and single operation unlock
value to ensure that the Flash main program area is not locked;

(4) Check the bit BSY@FLASH_SR to determine whether no Flash memory is running;

(5) When the bit BSY@FLASH_SR is 0, write the programming operation command word in
the Flash main program area to the FLASH_CR register;

(6) Write a 32-bit word/16-bit half word to the destination address;

(7) Check the bit BSY@FLASH_SR to judge whether the programming instruction has been
executed;

(8) When the bit BSY@FLASH_SR is 0, the operation is completed;

(9) Feed the WDT to the dog, and the LVR function is turned on;

(10) Turn on the total interrupt.

The operation flow chart is as follows:

 SH30F9/SB0 Series User Guide

 28

Unlock target flash

(single operation)

Is BSY@FLASH_SR bit set to 0?

Write main flash program area programming operation instruction word to

FLASH_CR register

Yes No

Is MNLCK@FLASH_CR bit set to 0?

Is BSY@FLASH_SR bit set to 0?

Yes

No

Yes

No

End

Start

Write a 32-bit word/16-bit half-word into target address

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

Main program area programming (single word or half word)

 SH30F9/SB0 Series User Guide

 29

(B) Continuously write multi-word programming

(1) Turn off the total interrupt

(2) Feed the WDT to the dog, and the LVR function is turned off to avoid reset during
operation;

(3) FLASH_MKYR sequentially writes the Flash unlock value and multiple operation unlock
values to ensure that the Flash main program area is not locked;

(4) Check the bit BSY@FLASH_SR to determine whether no Flash memory is running;

(5) Write the programming operation command word in the Flash main program area to the
FLASH_CR register;

(6) Write a 32-bit word/16-bit half word to the destination address;

(7) Check the bit BSY@FLASH_SR to judge whether the programming instruction has been
executed;

(8) Repeat (6)-(7) until the multi-address programming ends;

(9) The MNLCK@FLASH_CR bit is set to 1, and the operation is completed;

(10) Feed the WDT to the dog, and the LVR function is turned on;

(11) Turn on the total interrupt.

 SH30F9/SB0 Series User Guide

 30

Unlock target flash

(multiple operation)

Is BSY@FLASH_SR bit set to 0?

Write main flash program area programming operation instruction word to

FLASH_CR register

Yes No

Is MNLCK@FLASH_CR bit set to 0?

Is BSY@FLASH_SR bit set to 0?

Yes

No

Yes

No

End

Start

Write a 32-bit word/16-bit half-word into target address

Yes

Whether all programmings are done on multiple

addresses

No

MNLCK@FLASH_CR bit is set to 1

Turn off total interrupt

WDT feed the dog

LVR function off

WDT feed the dog

LVR function open

Open total interrupt

Main program area programming (continuously write multi-word programming)

For Flash memory, 16-bit or 32-bit data can be written each time. After the erase operation
of the main storage area, each 16-bit or 32-bit can only be programmed once, that is, if one
of the programmed 16-bit or 32-bit data is not 0, it cannot be programmed again, otherwise
the programming error flag Bit PGERR@FLASH_SR is set to 1.

If a sector in the Flash main program area has been protected by the write protection bit, but
the sector is still being written, the write protection error flag bit WRPRTERR @FLASH_SR
is set to 1.

 SH30F9/SB0 Series User Guide

 31

5.3.4. EEPROM-like memory area erase programming

The EEPROM-like storage area erasing programming is similar to the main program area
erasing and programming by sector, the difference is that the Flash unlock register is
different, the operation command word written into the FLASH_CR register is different, and
the flag bit of the locked storage area is different.

Note: Before erasing and programming the EEPROM-like storage area, please feed the
WDT to the dog, and the LVR function is turned off to avoid reset during the operation.

5.3.5. OTP area programming

The OTP area cannot be erased. The programming of the OTP area is similar to the
programming of the main program area. The difference is that the Flash unlock register is
different, the operation command word written into the FLASH_CR register is different, and
the flag bit of the locked storage area is different.

Note: Before erasing and programming the OTP area, please feed the WDT to the dog, and
the LVR function is turned off to avoid reset during the operation.

5.4. Anti-interference measures for programming/erasing

Since the program code includes programs for erasing and programming functions in the
main program area or E2PROM area, when the system is strongly disturbed, the erasing
and programming operation has certain risks. For example, when doing an ESD/EFT test,
the program may run away. If it runs directly from the outside to the place where the erased
code is written, it may rewrite or erase the non-program intended, causing the system to run
abnormally.

For this reason, it is recommended to add anti-interference measures when operating the
Flash main program area, EEPROM area or other areas:

(1) Since only when the start flag STRT@FLASH_CR is set to 1, the erasing/programming
of Flash will be started or waited for, so add a software flag at the beginning of the operation,
and then set the start flag STRT@FLASH_CR before Check whether the software flag
matches. If the flag bit does not match, the operation will exit directly, so the programming
or erasing action will not be started.

(2) To make full use of the function of the Flash operation timer, you can start the Flash
operation timer at the beginning of the operation, calculate and configure the window time
for the allowed operation, so that the program runs normally until the erasing or
programming operation is performed, and the Flash operation is timed The count value of
the counter is just within the executable window range, which can avoid misoperation
caused by program runaway.

(3) Try to avoid calling the programming and erasing subfunctions in the main program area
or EEPROM area with parameters. Because when the program runs away, the parameters
are random values, which are easy to misuse. Therefore, it is recommended that the main
program area or EEPROM area erase sub-function, without parameters, assign a constant
value to the address in the function, and erase a fixed sector.

(4) When operating the Flash main program area, EEPROM area or other areas, put the

 SH30F9/SB0 Series User Guide

 32

Flash unlock operation outside the erase and write functions.

【Note】 When writing to Flash (main program area, EEPROM area, OTP area or other

areas), it can only be operated by word (32 bits) or half word (16 bits).

SH30F9/SB0 series chip .

6. CRC

6.1. Overview

For the convenience of data verification, The SH30F9/SB0 series chip provides CRC
module to calculate cyclic redundancy code. This module provides 4 kinds of generating
polynomials and various data pre- and post-processing to meet different requirements for
CRC algorithms.

6.2. Programming Setting

6.2.1. Generating polynomials

Support 4 general generator polynomials: CRC-32 bits (0x04C11DB7), CRC-16 bits
(0x8005), CRC-CCITT (0x1021), CRC-8 (0x7). Generate 32-bit, 16-bit, and 8-bit CRC
codes respectively.

6.2.2. Input data processing

Support format conversion of input data and then perform CRC operation. The supported
conversion methods are bitwise inversion, byte order inversion, and byte order inversion.

6.2.3. Result processing

Supports format conversion of CRC operation results. The supported conversion methods
are bitwise inversion, byte order inversion, and byte order inversion.

6.2.4. Operation trigger

After the initial value is imported into the internal operation register through the reload
control bit, as long as the value is written to the DR register, a CRC operation will be
triggered.

6.2.5. Result obtaining

Read the DR register to get the CRC operation result without special waiting. If the
operation is not completed, the read instruction will not be executed.

【Note】 Reload the initial value before starting the continuous operation. Otherwise, the

initial value of the internal register is unknown, which will affect the calculation result. In the
same way, the initial value cannot be reloaded during continuous operation, otherwise the
intermediate result will be changed and the final result will be affected

【Note】 The Reload function is to load the initial register directly into the internal register

 SH30F9/SB0 Series User Guide

 33

without any format conversion. When the CRC value of a certain area is calculated by
dividing into blocks, if there is a format conversion process for the output result at this time,
the result obtained is not the value of the internal register. Therefore, when performing the
next block operation, the result obtained last time cannot be directly loaded into the internal
register, but the correct intermediate result needs to be obtained through the inverse
operation of the format conversion and then loaded into the internal register. The simple
method is: do not set the result format processing for the first few blocks, and then set the
result format processing after the calculation reaches the last block.

【Note】 When writing data to the DR register for calculation, it supports 8-bit, 16-bit, and

32-bit writing. However, it is required that the register address must be word-aligned when
writing/reading (4-byte alignment, that is, it must be the first address of the DR register).
Otherwise the result is indeterminate.

【Note】 When the generator polynomial is 32 bits, on the premise that the format of the

input data is not converted, the result of writing 32-bit data once for calculation is the same
as writing 8-bit data four times (low byte first) .

【Note】 When the generator polynomial is 8 bits, if one word is written at a time, only one

byte is calculated, and the high bits are ignored. Similarly, when the generator polynomial is
16 bits, if one word is written at a time, only one half word is calculated, and the high bits are
ignored.

7. WDT

7.1. HWDT

7.1.1. Overview

The independent watchdog of SH30F9/SB0 series chip has a 16-bit down counter, using

the built-in 128kHz RC as the clock source.

The independent watchdog cannot be turned off after power on.

HWDT can work in shutdown mode, so it can be used as a wake-up timer. By setting

HWDTPD@HWDT_CR, you can choose to turn on or off the watchdog when the shutdown

is disabled (the default shutdown mode is off). This bit cannot be changed after 1, only after

Reset Change.

When the power is turned on, the watchdog works with a longer overflow time, and the

overflow time is about 4096*32/128 = 1024ms.

7.1.2. HWDT Programming Setting

Before the timer overflows, write 0xAAAA to the feed dog register IWDT_CLR to update the

counter to restart counting to avoid overflow.

When the timer overflows, the chip will be reset and the HWDTRSTF@RCC_RSTSTR flag

will be set.

7.1.3. HWDT Application examples

 SH30F9/SB0 Series User Guide

 34

//Configure independent watchdog overflow time, T= 2.048s

HWDT->CR.V32 = ((0X5AA5<<HWDT_CR_LOCK_Pos)|0x00);

HWDT->CLR =0xAAAA; //feed the dog

7.2. WWDT

7.2.1. Overview

Window watchdogs are usually used to monitor software failures caused by external
disturbances or unforeseen logic conditions that cause applications to deviate from the
normal operating sequence. The window watchdog is an 8-bit decrement counter. The dog
feeding interval is a window area. If feeding the dog earlier than the window feeding area,
an advanced exception event will be generated, and if it is later than the window feeding
dog area, a delayed exception event will be generated. Both of them will cause a reset. . In
addition, when the counter reaches the lower boundary of the window dog feeding area, it is
the latest dog feeding time, and WWDT interrupt can be applied for, which can be used as
the last remedial time for window dog feeding.

7.2.2. WWDT Programming Setting

If RL represents the reload value of the window watchdog, WT represents the upper limit
value of the window watchdog. If RL>=WT is set, it is a normal window monitoring function
with advanced abnormal monitoring, that is, the window watchdog can feed the dog only
when the counter of the window watchdog is decremented below the upper limit value of the
dog feeding, otherwise it will be reset. If RL<WT is set, there is no advanced abnormality
monitoring, only delayed abnormality can be monitored. If the delayed feeding interrupt is
enabled, when the counter reaches the lower boundary of the window feeding area, it is the
latest feeding time, and the WWDT interrupt can be applied for, which can be used as the
last remedial moment of the window feeding; if the delayed feeding interrupt is disabled, the
counter When it reaches the lower boundary of the dog feeding area of the window, it is
found to be reset directly. Therefore, the setting of dog feeding time and window watchdog
must be calculated accurately according to the program.

Note: If RL=WT=0xFF is set, the window is the largest, without advanced monitoring, and
the function is similar to ordinary watchdog.

7.2.3. WWDT application examples

//Configure window watchdog overflow time

WWDT->CR.V32 = ((0x5AA5 << WWDT_CR_LOCK_Pos) | //Register unlock bit
(1 << WWDT_CR_WWDTON_Pos) | // Start WWDT
(1 << WWDT_CR_WWDTIE_Pos) | //Enable the latest dog feeding

interrupt of the WWDT
(WWDT_Prescaler_32 << WWDT_CR_WWDTPR_Pos) |//Clock

frequency division
 (0xFF<< WWDT_CR_WWDTRLR_Pos)); //Reload value

//Configure the upper limit of the WWDT
WWDT->WTR.V32 = ((0x5AA5 << WWDT_WTR_LOCK_Pos) | //Register unlock value
 (0x7F<< WWDT_WTR_WWDTWTR_Pos)); //The upper limit of the

 SH30F9/SB0 Series User Guide

 35

feeding window

... (user code)
WWDT->CLR =0x5555; //feed the dog

8. EXTI

8.1. Overview

The external interrupt is composed of 16 edge detectors that generate event/interrupt
requests, which can be used to detect the edge signal and level signal of the external input.
All GPIO pins on the chip can be configured as external interrupt lines, and each interrupt
line can be independently configured with an input type, and can also be independently
shielded.

8.2. Programming Setting

8.2.1. Edge trigger mode selection

The FTSR and RTSR registers select whether the corresponding external interrupt line can
be triggered by an external signal. For example, bit0 of RTSR is 1, indicating that the
external interrupt line EXTI0 can be triggered by an external high level/rising edge, and
other bits are similar. Once the corresponding bits of FTSR and RTSR are set to 1, as long
as there is an external trigger signal, the corresponding bit of the PR register will be set to 1,
even if the enable bit such as IMR/EMR/DMR is 0.

8.2.2. Software triggered interrupt

The register SWIER is a software trigger register. Writing 1 to the corresponding bit of
SWIER is equivalent to an external signal trigger on the corresponding external interrupt
line. It is often used when there is no external trigger signal, but the program needs to enter
the external interrupt function to execute. This bit will be automatically cleared after writing 1,
and the software does not need to operate.

8.2.3. External interrupt line selection

Each GPIO pin can be configured as an external interrupt line, so multiple GPIO pins must
share an external interrupt line. For example, PIN0 of GPIOA/GPIOB/GPIOC/GPIOD is
connected to EXTI0, and so on, EXTI0 ~15 are respectively connected to PIN0~15 of
different ports, and which GPIO port is selected by the specific EXTI line is determined by
the CFGL and CFGH registers in the EXTI module. The following figure lists the value of the
EXTI0 bit field:

EXTI0[2:0] Description

000 PA0 is connected to EXTI0

001 PB0 is connected to EXTI0

 SH30F9/SB0 Series User Guide

 36

010 PC0 is connected to EXTI0

011 PD0 is connected to EXTI0

Therefore, in practical applications, try to avoid using the ports of the same external
interrupt line such as PA0/PB0...PD0 at the same time. If there are three buttons that need
to be connected to external interrupt lines, it is recommended to connect them to PA1, PB2,
PA3 and other pins that occupy different EXTI ports, instead of PA0, PB0, and PC0,
otherwise it needs to be screened in the program .

8.2.4. Matters needing attention

(1) Since the registers that control trigger interrupts, trigger events are independent of each
other, the same external pulse can trigger the above twosituations at the same time.

(2) Since the Cortex-M0+ core uses a 2-stage pipeline, it is necessary to pay attention to
the local execution timing. There will be this requirement in the interrupt service program.
Specifically, do not put the clear interrupt flag in the last instruction before the interrupt
return, otherwise it may cause a secondary response to the interrupt. You can also use a
pipeline to isolate the instruction (such as "DSB") to ensure that the interrupt flag is cleared
before the interrupt returns. For details, see the "routine" description.

9. System configuration module (SYSCFG)

9.1. Overview

The system configuration module is mainly used to set some system parameters, such as
SRAM lock, DEBUG environment, etc.

9.2. Programming Setting

9.2.1. BOD

The BODMD bit field can set the mode of detecting VDD. When BODMD=10b, it can detect
the rise and fall of VDD. When VDD rises, the BODF bit is 0, and when VDD drops, BODF is 1.

9.2.2. LVR

VLVR[1:0] can select three LVR voltages, and the value of this LVR related register remains
unchanged after reset.

9.2.3. NMI interrupt switch

The NMI interrupt is a non-maskable interrupt with the highest priority in the entire chip, and
the three interrupts CSM, EXTI0, and BOD can be connected to the NMI interrupt by
enabling the corresponding bit segment of the SAFR register.

Once the above three interrupts are connected to the NMI interrupt, when an interrupt
occurs, it will directly enter the NMI interrupt service function. Although the original interrupt
can also be triggered, but because the priority is lower than the NMI interrupt, the service

 SH30F9/SB0 Series User Guide

 37

function of the original interrupt will not be implemented, which requires special attention
during the application design process.

9.2.4. Crystal oscillator pins are used as GPIO

The crystal oscillator pins XTAL1/XTAL2 default input and output are all off. If you want to
use an external crystal oscillator, you need to set the OSCCFG bit of the SAFR register, and
it cannot be modified until the next reset.

OSCCFG[1:0] Description

00 XTAL1 and XTAL2 input and output are all closed (Default)

01
XTAL1 and XTAL2 are used as external oscillator interface

(Crystal oscillator and Ceramic oscillator)

10
XTAL1 is used as an external clock source input, and XTAL2 is

used as a GPIO

11 XTAL1 and XTAL2 input and output are all closed (Default)

9.2.5. Simulation pins are used as GPIO

When a large number of IO pins need to be used in an application, the emulation pin can be
used as a normal GPIO by setting the SWJCFG bit field of SAFR.

When SWJCFG!=101b, SW-DP is off, but there are special cases for SWDIO and SWCLK.
That is, when the chip is in the normal operation mode, the program not sets SWJCFG to
101b, then all the emulation pins are regarded as GPIO pins at this time, and cannot be
modified until the next RESET, and cannot enter the emulation mode. When the chip is
single-step running in the emulation mode, even when it runs to the statement of setting
SWJCFG!=101b, SWDIO and SWCLK are still used as emulation pins, and the emulation
mode will not be forced to exit.

9.2.6. The peripherals run in debug mode

When the chip is in the emulation mode, the peripherals will be in a stop state under normal
circumstances, such as the TIM counter will not continue to count, etc., by setting the
corresponding bit of the DBGCR register, the peripheral can continue to run, such as setting
BIT9 of the register to 1 Then the TIM can run normally.

The upper 16 bits of the DBGCR register are unlock bits, which must be 0x5AA5. When
setting, 32 bits of data need to be written to the register at the same time to take effect.

【Note】 When debugging, it is forbidden to configure the emulation port as an open-drain

function, otherwise it will affect the emulation debugging. In actual project application, if the
emulation port is reused as TWI, it is recommended to close the TWI initialization (IO, TWI

 SH30F9/SB0 Series User Guide

 38

module) in the emulation mode.

9.2.7. Low-power consumption mode

There are two low-power modes, sleep mode and stop mode. The difference is that the
latter not only stops the core, but also stops the clocks of the peripherals, which is
equivalent to deep sleep.

In terms of software processing, the stop mode needs to set the bit SLEEPDEEP of the
core system control register (0XE000ED10) to 1, and then execute the WFE or WFI
instruction.

An example of configuring sleep mode is as follows:

Turn off peripherals that do not need to run in sleep mode

Configure wake-up sources, such as external interrupts or other interrupts that can run in
sleep mode

Use the command WFI or WFE to enter sleep mode (if WFE is used and there is an
interrupt before, it is recommended to call it twice)

Wait for the MCU to wake up

An example of configuring stop mode is as follows:

Configure wake-up sources, such as external interrupts, etc. (most peripheral interrupts in
stop mode cannot wake up the MCU)

Turn off the clock source that does not use peripherals, and the analog module also needs
to turn off the enable bit of the module

Unused GPIO pins can be configured as input and output all off or analog input to save
power consumption

Set the bit SLEEPDEEP of the system control register to 1

Call the command WFI or WFE to enter stop mode (if WFE is used and an interrupt has
been generated before, it is recommended to call it twice)

Wait for the MCU to wake up

Among the above two methods, the stop mode has the lowest power consumption. After
entering this mode, all peripheral clocks are turned off, so ordinary peripheral interrupts
cannot wake up the MCU. For example, the TIM using the APB0 clock, because the clock is
turned off , the counter has been unable to overflow and cannot generate interrupts, so it
cannot be used as an interrupt source.

WFE and WFI are two ways for the kernel to enter low power consumption. WFE is event
wake-up, and WFI is interrupt wake-up. Usually, the interrupt that can wake up WFI can
wake up WFE, and vice versa.

 SH30F9/SB0 Series User Guide

 39

【Note】 When the system wakes up from PD, the system clock runs at internal 128K and

needs to be manually switched back to the clock before entering PD.

10. PCA

10.1. Overview

The programmable counter array PCA provides enhanced timer functions, and can provide
four enhanced functions of input capture, compare match (output), frequency adjustable
square wave output, and PWM modulation output. SH30F9/SB0 series chip has 4 built-in
PCA modules (PCA0/1/2/3), and each PCA module provides 2 input and output channels.

The PCA characteristics of SH30F9/SB0 series chip are:

◼ 16-bit timer
◼ 2 independent input and output channels
◼ Support input capture, compare match (output)
◼ Support square wave output with adjustable frequency
◼ 16/8 bit PWM, 4 output modes
◼ Two pairs of PCA0/1 and PCA2/3 can be cascaded into a 32-bit PCA module

The programmable counter array PCA consists of a basic counting unit and two 16-bit
capture/compare modules. Each capture/compare module has independent pins
(PCAxA/PCAxB), which can be used as capture signal input or waveform output.

Note: The small subscript x is the PCA serial number, such as PCAx (x=0, 1, 2, 3), PCAx
will be used uniformly below, and the value of x will not be explained.

16Bit Counter16Bit Counter

Capture/Compare

Cell 0

Capture/Compare

Cell 0

P
C

A
x
A

Overflow

Flag

Interrupt
RequestCIFCIF

PCAx_PRPCAx_PR

16Bit Compare16Bit Compare

Clear

P
C

A
x
B

C
lo

c
k
 S

e
le

c
t

C
lo

c
k
 S

e
le

c
t

BUS CLOCK

PxCPS2~0

PEN
LSICLK

Capture/Compare

Cell 1

Capture/Compare

Cell 1

Overflow

PCAxECI

PrescalerPrescaler

TIM0

HSECLK/8

PCA block diagram

PCAx consists of a 16-bit period register PCAx_PR, a 16-bit count register PCAx_CNT and
a 16-bit prescaler register PCAx_PSC to form a basic counting/timing unit.

The 16-bit counter has two counting modes, counting up and center-aligned counting.
When the SDEN bit in the register PCAx_CFGR is 0, the counter works in the up-counting
mode, and when SDEN is 1, the counter works in the center-aligned counting mode.

 SH30F9/SB0 Series User Guide

 40

In the up-counting mode, the counter counts up from 0 to the value of the period register
PCAx_PR, then starts counting from 0 again and generates a counter overflow event, and
the CIF bit in the status register PCAx_SR will be set to 1 by hardware. An interrupt is
generated if the CIE bit in register PCAx_CFGR is set to 1 by software.

In the center-aligned counting mode, the counter counts up from 0 to the value of the period
register PCAx_PR, and then counts down to 1 to complete a cycle, and then starts counting
from 0 again in the next cycle, and continues to cycle. When the counter value is the value
of the period register PR, a period match event will be generated, and the PIF bit in the
status register PCAx_SR will be set to 1 by hardware. If the PIE in the CFGR register is 1,
an interrupt will be triggered. When the counter value counts to 0, a counter overflow event
will be generated, and the CIF bit in the status register PCAx_SR will be set to 1 by
hardware. If the CIE bit in register CFGR is set to 1 by software, an interrupt will be
triggered.

Note: From the shape of the generated waveform, the up-counting mode can also be called
the sawtooth wave mode, and the center-aligned counting mode can also be called the
triangle wave mode.

10.2. Programming Setting

10.2.1. IO setting

When using the relevant input and output functions of PCA, the IO multiplexing (AF)
function must be set first, that is, the multiplexing register (GPIOx->AFRH/L) corresponding
to the IO must be set as the PCA-related AF function.

10.2.2. Clock setting

The clock source of the counter can be selected by setting CPS[2:0] in the register
PCAx_CFGR, which are bus clock, PCAxECI pin clock input, built-in 128KHz RC (LSICLK),
external high frequency Oscillator/8 (HSECLK/8) and TIM0 overflow, as shown in the table
below.

CPS[2] CPS[1] CPS[0]

0 0 0 Bus clock

0 0 1 External pin input PCAxECI clock falling edge

0 1 0 LSICLK (RC128K)

0 1 1 HSECLK/8 (Crystal/Ceramic divide by 8)

1 0 0 TIM0 overflow

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

When CPS[2:0]=001, the external ECI pin input is selected as the clock source, and the
filter parameters of the input clock source can be selected by setting the ECF[1:0] bit field in
the CFGR register. The filter parameters are no filter, 8 times the bus clock, 16 times the
bus clock, and 32 times the bus clock.

 SH30F9/SB0 Series User Guide

 41

Note: The bus clock cycle must not be lower than 4 times the count clock cycle (except
when the count clock is the bus clock), otherwise the PCAx counter will not count correctly.

10.2.3. PCA count mode setting

The PCAx counter/timer has a control bit that can select the counting mode. SDEN in the
PCAx->CFGR register is 0 to indicate the sawtooth wave mode, and SDEN is 1 to indicate
the triangle wave mode. The timing waveforms of sawtooth and triangle waves are as
follows:

PCAx

CIF is set 1
PCAx->PR reload
PCAx->PR is going to refresh after PCAx
Interrupt

Period

（x=0,1,2,3）

Waveform diagram of PCAx counter in up-counting (sawtooth) mode

Period

PCAx

CIF is set 1

Waveform diagram of PCAx counter in center-aligned counting (Triangle Wave) mode

10.2.4. PCA mode setting

PCAx counters can be mounted with 2-way capture/compare modules to achieve enhanced
functions. Each capture/compare module can be configured to work independently (Note: 1
capture/compare module corresponds to 1 channel), each module has its own control
registers in the system controller, these registers are used to configure the module work
and exchange data with the module. You can enable the module to work in one of the
following four working modes by configuring the two bits of SM[1:0] in the PCAx->CCMR
register of each module: input capture, compare match output, frequency output, and PWM
output mode. For details, see the description in the PCA chapter of the specification.

10.2.5. Matters needing attention

（1） Changing the PCAx->PR value must ensure that the new PCAx->PR value is not
less than the value of all compare registers.

 SH30F9/SB0 Series User Guide

 42

（2） When the comparison/capture module is used as a PWM output function, if
PCAx->CCR is equal to 0x0000, the output will always be kept at low level; if
PCAx->CCR is equal to PCAx->PR, the output will be kept at high level. Inverting the
pin results in the opposite output.

（3） All compare/capture modules of PCAx can only work in the same counting mode (for
example: compare/capture module 0 and compare/capture module 1 of PCA0 can
only work in the same counting mode).

（4） After cascading, the PR value of PCA1 and CCR0/CCR1 are automatically mapped
to the upper 16 bits of the corresponding register of PCA0, so reading only needs to
read the 32-bit register of PCA0, and the rest of the PCA cascading is the same.

11. PWM

11.1. Overview

The SH30F9/SB0 series chip integrates four 16-bit PWM modules. The PWM module can
generate pulse width modulation waveforms with adjustable period and duty cycle.

The PWM timer also provides 4 interrupt sources for PWMx (x = 0,1,2,3), which will
generate an interrupt every PWM cycle. In this way, the user can change the period or duty
cycle of the next cycle in each PWM cycle.

Has the following characteristics:

◼ 4×2 complementary outputs with dead zone control

◼ Provide every PWMx (x = 0,1,2,3) cycle overflow interrupt

◼ Two output polarities can be selected independently

◼ Provide error detection function to shut down PWM output in an emergency

◼ Provide protection registers to protect important registers from interference errors

11.2. Programming Setting

11.2.1. IO setting

When using PWM related output functions, you must first set the IO multiplexing (AF)
function, that is, set the corresponding IO multiplexing register (GPIOx->AFRH/L) to the
corresponding AF. For specific multiplexing information, please refer to Refer to "Multiple
Function Mapping Table".

11.2.2. Protection setting

The PWM module is equipped with protection registers. When you need to set PWM-related
registers, you need to write 0x5AA5 to PWMx->PWMLOCK to unlock, and then operate
other registers. When PWMx->PWMLOCK writes a value other than 0x5AA5, operate other
registers. Invalid, this can effectively protect the PWM output from interference.

11.2.3. Module setting

 SH30F9/SB0 Series User Guide

 43

PWM programming is divided into the following steps:

（1） Unlock the PWM module.

（2） Select the PWM module clock source.

（3） Set the PWM period/duty cycle by writing an appropriate value to the PWM Period
Control Register (PWMPR) or PWM Duty Cycle Register (PWMDR).

（4） Select the PWMx output mode (active high or active low) by setting the PWMSx bit of
the PWMx->CR register.

（5） Set the PWMEN enable module output of the PWMx->CR register

（6） If the PWM cycle or duty cycle needs to be changed, the operation process is as
described in step 3 or step 4. The modified value of the reload counter is valid from
the next cycle onwards.

（7） Lock the PWM module.

11.2.4. Matters needing attention

（1） When PWMx output is off (FLT occurs), the output of PWM can be cut off and
enter an invalid driving state (which can be set to high level, low level, and high
resistance state).

（2） Once the high/low level of the FLTx pin is detected, the internal state will be
maintained and the PWMx output will be turned off.

（3） When the FLTx input signal is valid, the FLTS bit cannot be cleared. The FLTS status
bit can only be cleared after the FLTx input signal disappears.

（4） When PP[15:0] = 0000H, if PWMSA=0, regardless of the PWMx duty cycle, PWMxA
(x=0,1,2,3) outputs low level.
When PP[15:0] = 0000H, if PWMSA=1, regardless of the PWMx duty cycle, PWMxA
(x=0,1,2,3) outputs high level.

（5） When PD[15:0] = 0000H, if PWMSA=0, regardless of the PWMx period, PWMxA
(x=0,1,2,3) outputs low level.
When PD[15:0] = 0000H, if PWMSA=1, regardless of the PWMx period, PWMxA
(x=0,1,2,3) outputs high level.

When PP[15:0] ≠ 0000H and PP[15:0] ≤ PD[15:0], if PWMSA=0, PWMxA

(x=0,1,2,3) output high level.

When PP[15:0] ≠ 0000H and PP[15:0] ≤ PD[15:0], if PWMSA=1, PWMxA

(x=0,1,2,3) output low level.

12. ADC

12.1. Overview

The SH30F9/SB0 series chip is equipped with a 12 bit A/D converter using successive

 SH30F9/SB0 Series User Guide

 44

approximation method. The conversion rate of AN4~AN5 channels can reach up to 1MSPS,
while the conversion rate of other channels can reach up to 100KSPS. The reference
voltage defaults to AVDD, with a total of 30 ADC analog input channels, supporting three
conversion modes: sequence conversion, intermittent conversion, and continuous
conversion, with comparison function. Not only does it support software triggered AD
conversion, but it also supports 4 PWM modules (PWM0/1/2/3), 4 PCA timers (PCA0/1/2/3),
a regular timer TIM2, and external interrupts (EXTI0/1/2/3) to trigger AD conversion.

12.2. Programming Setting

12.2.1. ADC clock setting

After the system clock is set, enable the ADC module clock control bit.

12.2.2. ADC channel IO port function setting

Enable the analog multiplexing function of the ADC channel corresponding to the IO port.

12.2.3. ADC sampling rate configuration

ADC clock and sampling time can be set through the register ADCON2. Set ADC clock by
TADC[3:0]@ADCON2. Set the sampling time tSAMP of each channel through registers
TS[3:0]@ADCON2, TGAP[2:0]@ADCON2 and GAPENx@ADGAPON, tSAMP = (TS[3:0]+
TGAP[2:0]* GAPEN +1) * tAD, where TGAP[2:0] GAPEN is the time interval setting bit field
between adjacent channels in the sequence, and GAPEN is the GAP time enable control bit
of ADC channel y.

For 12BIT mode AD conversion, the AD conversion time of each channel is fixed at 15 * tAD.
So total sample conversion time per channel = tSAMP + 15 * tAD. For 10BIT mode AD
conversion, the AD conversion time of each channel is fixed at 13 * tAD. So total sample
conversion time per channel = tSAMP + 13 * tAD.

12.2.4. ADC conversion mode configuration

12.2.4.1. Single Conversion

ADCTU[1:0] = 00, the ADC is configured as a single sequence conversion mode, converting
one sequence at a time. A sequence consists of a single channel or multiple channels. To
convert a sequence means to convert the channels in the sequence one by one. In
hardware, multiple signals can be converted at the same time point (the shortest sampling
interval between 2 channels is 0.5us, which can be regarded as approximately at the same
time).

The conversion result is stored in the corresponding result register. When the sequence
conversion is completed, compare the value of a specified result register with the values of
ADDGT and ADDLT, and indicate the result of the comparison with a flag.

In the single-sequence conversion mode, after ADSOC is set, it starts to convert from
channel 0. After each single-channel conversion, this register is automatically incremented
by 1, and then the next channel conversion is performed. When the number of
single-sequence conversion channels reaches the set value value (ADMAXCH[2:0]), this
sequence of conversion ends, and the ADSOC bit is cleared, indicating that this sequence

 SH30F9/SB0 Series User Guide

 45

of conversion is completed, and the ADPCH register is automatically reset to 0; at the same
time, the ADIF bit in ADINTF will be set by hardware. At this time If the ADIE bit in ADCON1
is 1 (note: the interrupt of the ADC should not be masked), the sequence conversion
completion interrupt will be triggered, and the ADIFC flag needs to be cleared by software.

12.2.4.2. Intermittent Conversion

ADCTU[1:0] = 01, then the ADC works in the discontinuous conversion mode, and the ADC
starts converting directly from the channel specified by the ADPCH register. When the
number of conversions reaches the set value (ADMAXCH[2:0]), this The sequence
conversion ends. The maximum number of the ADC sampling channel is 7, so when the
conversion channel pointer register ADPCH exceeds 7, it will automatically return to 0. After
a sequence conversion ends, if the ADPCH software is rewritten to 0 at this time, the next
conversion will resume from channel 0; if the ADPCH is not rewritten, the next conversion
channel will start from the value of ADPCH, if the preset analog channel of the channel is
not After setting, you may get unexpected results, so the program should be careful when
rewriting this register (During ADC conversion (ADSOC = 1), ADPCH cannot be modified).

12.2.4.3. Continuous Conversion

ADCTU[1:0] = 1x selects the continuous conversion mode, after converting a sequence, the
next conversion of this sequence will be performed. Some register settings of continuous
conversion can refer to "single conversion mode". The difference from sequence
conversion is that this mode will cycle conversion sequence, and the time from the
completion of one sequence conversion to the start of the next sequence conversion is also
controlled by TGAP[3:0] . When each sequence conversion is completed, compare the
value of a specified result register with the values of ADDGT and ADDLT, and indicate the
result of the comparison with a flag. When the software clears the ADSOC bit, the AD
conversion stops immediately.

12.3. Matters needing attention

In order to ensure that the AD conversion can convert an accurate AD result under a certain
conversion rate, it is necessary to calculate whether the equivalent input impedance
matches according to the actual application situation, otherwise it will not be possible to
obtain a conversion result with an accuracy error within 0.1LSB.

Before ADC conversion, you need to turn on ADON@ADCON1 for 10us and then set the
ADSOC@ADCON1 bit to 1, because the ADC module needs a period of time to warm up to
convert after it is turned on.

For the channel used for AD conversion, the IO port function must be multiplexed as an
analog function, otherwise the correct conversion result cannot be obtained.

After the ADC conversion is enabled, the channel parameters cannot be changed, including
core channel parameters such as TGAP, GAPENx, TS, ADMAXCH, TADC, ADPCH,
SEQCHx, etc., and any modification will be considered invalid.

The same channel number can also be set in SEQCHx, for example, if all the values in
SEQCHx are set to AN3, the result register will store the sampling values of AN3 in different
time periods.

 SH30F9/SB0 Series User Guide

 46

When ADIE, ADLIE, and ADGIE are all enabled, any one of ADIF, ADLIF, and ADGIF can
cause an interrupt, and share an interrupt vector. By judging which of ADIF, ADLIF, and
ADGIF is 1, determine the specific interrupt source and Customize specific actions.

The time interval between adjacent channels in the AD conversion sequence can be used
to increase the sampling time of the ADC. The Gap Time of each channel can be set
independently, so the Gap Time can also be used as the sampling time of each channel.
The Gap Time of all channels can only be set to one value, but each channel can be
individually set whether to enable Gap Time. The first channel can also set the Gap Time,
which can also be used as the sampling time.

During any hardware trigger single-shot sequence, intermittent conversion and continuous
conversion, if there is another hardware trigger, the last hardware trigger request will be
ignored.

When the comparison function is applied, the written values of ADDGT and ADDLT take
effect immediately, and the latest updated values of ADDGT and ADDLT will be used when
comparing.

13. TIMER

13.1. Overview

There are three basic 16-bit timers and one basic 32-bit timer inside SH30F9/SB0 series
chip.Each timer can run with the bus clock, but also with the internal low frequency RC
(128KHz LSI/4).

Each timer can output a square wave with adjustable frequency through the actual GPIO
pin, or drive the counting unit of the timer from an external input clock source through the
GPIO pin.

13.2. Programming Setting

13.2.1. Basic timing application

The basic timer can be configured as a simple timing function, and is mostly used for
system time base or software timing in practical applications.

13.2.2. Square wave with adjustable output frequency

By setting the GPIO pin to be used as a TIM function, and then enabling the TC bit of the
CR register, the GPIO pin can be flipped according to the overflow time of the timer to
generate a square wave. To change the frequency, you only need to modify the overflow
time of the timer.

13.2.3. Matters needing attention

1) The overflow flag bit is generated when the counter (TCNT) changes from the value in
the period register (TPR) to 0, so the actual number of clocks in one cycle is TPR+1,
that is, when the application requires a cycle of 100 , TPR should be set to 99.

 SH30F9/SB0 Series User Guide

 47

2) If the initial value of the counter TCNT is greater than the value of the period TPR, then
after the timer is enabled, the counter will run up to 0xFFFF(TIM3 will run to
0xFFFFFFFF) and then overflow to 0, and will cycle between 0 and TPR in the next
period.

3) The counter register, prescaler register and period register are all modified when the
timer is stopped.

4) When selecting the external clock for Timer, it is necessary to ensure that the frequency
of the bus clock is at least three times that of the external clock

5) The usage method of TIM3 is the same as that of TIM0-2, the difference is that TIM3 is
a 32-bit count, while TIM0-2 is a 16-bit count.

6) When the Timer clock source is selected as Tx port input, do not write to TCNT. If there
is a need to clear TCNT and then count, it can be replaced by the difference between
the two TCNT values before and after reading.

14. UART

14.1. Overview

The SH30F9/SB0 series chip provides 6 sets of UART. Support flexible IO function
mapping.

Each group of UART has four working modes, comes with a baud rate generator, supports
hardware parity check, and UART0~2 can be configured with FIFO, supporting data
transmission and reception based on FIFO.

In addition, it also supports 1/2 stop bit can be set, and supports hardware generation and
detection of LIN bus synchronous interruption. Enhancements include framing error
detection and automatic address recognition.

14.2. Programming Setting

14.2.1. Sending

There are TDR and TDR shift two-level registers inside the UART transmission logic, so
customers can write 2byte transmission data continuously for the first time. When the UART
is turned on, the transmit interrupt flag TI is valid by default, and will not be automatically
cleared until TDR and shift are filled with data, and then the interrupt TI will be generated
when the TDR data is loaded into the shift register and becomes empty. The TC flag is set
when the data in the TDR and shift registers are all empty, and the flag will be automatically
cleared to 0 with the data written.

14.2.2. Receiving

There are RDR and RDR shift two-level registers inside the UART receiving circuit. The
user needs to remove the data in time after receiving the data. Otherwise, when there is
data in the RDR memory, the data in the shift will be flushed after receiving. Therefore, the

 SH30F9/SB0 Series User Guide

 48

user needs to remove the RDR data before the shift data reception is completed at the
latest. The RI flag is generated after receiving a complete byte of data. After the data in
RDR is read empty, RI will be automatically cleared to 0.

【Note】 After the UART single-byte data is received, it must be removed before the next

single-byte data is received, otherwise data loss or receiving overflow will occur.

14.2.3. IO setting

Since the TXDx/RXDx pins are multiplexed with I/O functions. If the AF function selects
UART, the RXDx pin is automatically set to UART input, but the internal pull-up resistor
needs to be manually turned on in advance; the TXDx pin is automatically set to UART
output, but the open-drain output or push-pull output needs to be initialized in advance.
Note that if it is multiplexed with the emulation port, you need to close the emulation port in
SYSCFG first, otherwise the AF configuration will not take effect.

14.2.4. LIN mode

In LIN mode, detection of discontinuous frame and receiving data cannot be carried out at
the same time. The correct use process is to detect synchronous discontinuity first, then
switch to receiving data mode under LBD interrupt, and then switch back to synchronous
discontinuity detection mode after receiving.

【Note】 When detecting the synchronization interval in UART LIN bus mode, it is normal

for the frame error flag to be set, and there is no need for special treatment, just clear it.

14.2.5. Interrupt

When using interrupt mode, it is recommended to enable TIE before sending data after
initializing UART, otherwise, enable TIE before enabling TEN, the interrupt service program
will first transfer 2byte data to TDR and shift, and send it out when TEN is enabled.

14.2.6. Parity check

When using the parity check function, its priority is the highest, and the multi-device
communication and custom ninth digit functions will not be available.

14.2.7. Error flag

Send conflict, receive overflow, parity error, frame error and other error flags will be set
when they occur again, but will not trigger an interrupt. If customers want to use it, they
need to query and process it in the UART interrupt.

14.2.8. Other notes

In order to avoid misjudgment at the receiving end, in the UART transmission initialization
program, it is recommended to set the I/O state of the corresponding TXD to output high
level.

15. SPI

 SH30F9/SB0 Series User Guide

 49

15.1. Overview

The SH30F9/SB0 series chip provides 2 sets of SPI. Support flexible IO function mapping.

Each SPI supports working in full-duplex mode, master/slave mode, programmable master
clock frequency (up to bus frequency divided by 2), programmable polarity and phase of
serial clock, and data word width per transmission 8, 16, and 32bit are optional, and the big
and small endian modes are optional.SPI0 is configurable with FIFO and supports FIFO
based data transmission and reception.

15.2. Programming Setting

15.2.1. Sending

The SPI transmission circuit contains TDR, TDR buffer and shift three-level registers (the
latter two cannot be operated by the user); the user can write 2 data for the first time. When
SPI is turned on, the transmit interrupt flag bit SPTI is set by default (indicating that TDR is
empty), and it will not be cleared until TDR and TDR buffer are filled with data. The reset of
SPTI occurs after the data in the TDR is loaded into the TDR buffer, indicating that one data
can be written into the TDR again. The schematic diagram of the three-level register is as
follows:

【Note】 The first data will be written through to TDR buf.

【Note】 SPI does not have an independent send enable switch. After the CPU writes a

piece of data, the shift starts to send. There is no situation where the two-level registers are
filled before sending. The process is always in the process of writing. in the process of
sending.

【Note】 Writing to TDR will clear SPTI.

【Note】 It is not allowed to write TDR continuously, and only one data should be written

each time.

15.2.2. Reveiving

There are RDR, RDR buffer and shift three-level registers inside the SPI receiving circuit.
The user needs to remove the data in time after receiving the data. Otherwise, when there
is data in the RDR and RDR buffer memory, the data in the shift is also full, and subsequent
data will occur. Receive overflow event (RXOV), the subsequent data will be discarded. The
user needs to remove the RDR data at the latest after the shift data is full and before new
data arrives. The SPRI flag is set after the RDR stores 1 data (indicating that the RDR is
full). After the data in the RDR is read empty, the SPRI will be automatically cleared to 0. If
there is data in the lower buffer, the data will be automatically pushed to the RDR register,

 SH30F9/SB0 Series User Guide

 50

and Reset SPRI.

【Note】 shift is shared by sending and receiving, while buffer and data register (TDR/RDR)

are two independent sets. The sharing of shift is clearly stated in the data sheet.

【Note】 Reading RDR means clearing SPRI.

15.2.3. IO setting

Since the SPI pins are multiplexed with I/O functions. If the AF function selects SPI, the
signal input pin is automatically set to SPI input, but the internal pull-up resistor needs to be
manually turned on in advance; the signal output pin is automatically set to SPI output, but
the open-drain output or push-pull output needs to be initialized in advance .

15.2.4. Fast slave mode

When the SPI module selects the slave mode of CPHA=0, the SS
———

 pin must be used as a
chip select signal, and it must be pulled low before sending 1 byte, and pulled high after
sending 1 byte, and so on.

【Note】 The reason why the SS
———

 pin must be used is that when CPHA=0, the slave device

has no clock edge to trigger the data loading operation, and can only use the SS
———

 signal
line to complete the data loading. CPHA=1 does not have this problem, you can set

SSDIS=1 to shield the SS
———

 signal.

In order to avoid the control of the SS
———

 pin from reducing communication efficiency, the

slave fast mode (SPSFF) is introduced. You only need to pull the SS
———

 pin low when sending
for the first time, and the subsequent data will be automatically sent by The SCK rear edge

of the previous data is loaded, and the SS
———

 pin control is omitted.

【Note】 If it is full-duplex communication, for the slave, because it does not know when

SCK will arrive, it is necessary to load a piece of data in TDR in advance, otherwise it will
cause the delay of the first data from the slave to the master , it is often recommended to
use CPHA=1 mode for such situations.

15.2.5. Intterupt

When using interrupt mode, SPTIE needs to be turned on after initializing SPI and before
sending data. When a MODF error occurs, it is necessary to use software in the interrupt to
switch to the slave and close the SPI. If the SPI needs to be switched to receive data from
the slave, you need to re-enable the SPI. If the SPI still needs to send and receive data as a
host, it needs to detect that the SS level is high before setting it as the host to restart the
SPI communication.

 SH30F9/SB0 Series User Guide

 51

15.2.6. Error flag

Sending conflicts and receiving overflow error flags will not trigger an interrupt. If necessary,
the user needs to check and handle it in the program.

16. TWI

16.1. Overview

The TWI (Two-wire Serial Interface) interface is the inheritance and development of the I2C
bus interface and is fully compatible with the I2C bus.

TWI is composed of a clock line and a data line, and is transmitted in units of bytes. It is
compatible with the SMBus bus specification, automatically processes byte transmission,
and tracks serial communication.

SCL/SDA is the signal line of TWI bus. SDA is a bidirectional data line and SCL is a clock
line. To transmit data on the TWI bus, the highest bit (MSB) is first sent, the host sends a
start signal, and then the host sends one or more bytes of data. After the data transmission
is completed, the host sends a stop signal to complete the simplest TWI transmission.

16.2. TWI bus setting

16.2.1. I/O setting

The TWI bus is required to be configured as an open-drain output. Note that the external
pull-up is limited to VDD or slightly higher than VDD when the open-drain output is used.

GPIOA -> AFRH.BIT.AFR14 = 4; // PA14 = AF4 ~ SDA0
GPIOA -> AFRH.BIT.AFR13 = 5; // PA13 = AF5 ~ SCL0
GPIOA ->OTYPER.BIT.OT14 = 1; // PA13/14: OD output
GPIOA->OTYPER.BIT.OT13 = 1;
GPIOA ->PUPDR.BIT.PHDR14 = 1; // PA13/14: pull high, use internal pull-up example here
GPIOA->PUPDR.BIT.PHDR13 = 1;

16.2.2. Baud rate configuration

// Prescaler, 0:64 frequency division, 1:16 frequency division, 2:4 frequency division, 3:1
frequency division

TWI->CR.BIT.CR = 3;

// Baud rate formula: Ftwi/(16+2*CR*BRT), when setting the baud rate to 100Kbps,
Ftwi=24MHz, requires CR*BRT=112, take CR=1, BRT=112

TWI->BRT = 112;

16.2.3. Communication address configuration

// TWIAMR=0, do not enable shielding. ADDR[6:0]=0111011b, local machine address.
GC=0b, disable responding to general address.

 SH30F9/SB0 Series User Guide

 52

TWI->ADDR.V32 = 0x0076;

16.3. Four basic communication modes

The TWI communication of SH30F9/SB0 series chip is completed by the bottom drive
circuit and application software based on interrupt. All bus events such as receiving a byte
or sending a START condition generate an interrupt. So during the byte transfer, the
application software can perform other operations.

Four basic operation modes of TWI:

⚫ Host sending mode: the machine acts as the host, sending data

⚫ Host receiving mode: the machine acts as the host to receive data

⚫ Slave sending mode: This machine acts as a slave, sending data

⚫ Slave receiving mode: the machine acts as a slave to receive data

All operations are combined from these four basic operating modes.

【Note】 The TWI bus does not perform sending and receiving operations during the

TWINT setting period, and the status will not be updated. The status can only be updated
after the flag is cleared.

【Note】 The setting of TWINT is only related to the state change of the local machine. It

may be that the local machine has completed a certain transmission, or the local machine
may have completed a certain reception, which will lead to a state change.

【Note】 In the initialization phase, AA=1 means setting as slave mode, and in the

communication process, AA=1 means replying ACK signal.

【Note】 In the TWI bus, both the start condition and the stop condition are sent by the

host.

Because TWI uses a bidirectional data line SDA for sending and receiving, it must strictly
follow the timing when communicating. There are four basic communication modes in the
data sheet. All TWI protocols are derived from these four basic modes.

16.4. TWI Interrupt and timeout

The TWI of SH30F9/SB0 series chip has 3 interrupt sources: communication interruption,
bus timeout, and SCL high level timeout. The corresponding three interrupt flags are TWINT,
TOUT, TFREE.

The bus timeout (TOUT) function and SCL high level timeout (TFREE) function of
SH30F9/SB0 series chip are always on and cannot be turned off.

TOUT is generated after the SCL low level exceeds a certain period of time, indicating the
upper limit of the time that a master or slave can pull the bus clock down. If the time
exceeds this time, a bus timeout event will occur, and the hardware will automatically
release the bus and set TOUT flag.

【Note】 The TOUT timeout function is permanently enabled. If the SCL is pulled down for

a long time, a TOUT event will inevitably occur. The default timeout for TOUT is 25000 bus

 SH30F9/SB0 Series User Guide

 53

clocks.

TFREE occurs after the SCL high level exceeds a certain period of time, indicating that the
bus is in an "idle" state. After the TFREE event occurs, the hardware automatically releases
the bus and set TOUT flag.

【Note】 The TFREE timeout function is permanently enabled. If the SCL is pulled up for a

long time (because SCL is pulled up by default, this state means that the SCL is idle), a
TFREE event will inevitably occur. The default timeout time of TFREE is HOC×1024 bus
clocks (the default value of HOC is 255).

【Note】 ETOT and EFREE are enable bits that control whether interrupts are generated

when TOUT and TFREE events occur, not module function enable bits (emphasis again:
the module function is permanently enabled).If ETOT and EFREE are turned off, there will
be no interruption even if the timeout flag is set.

【Note】 TWINT is a communication interruption flag, and it will be set when the state of

TWI changes, but it will not be set when entering the 0xF8 state from other states.

 SH30F9/SB0 Series User Guide

 54

17. Aappendix

17.1. Aappendix 1：Function location and debugging method in KEIL MDK

Take SH30F9010 as an example to illustrate:

Code Area: 0x0000 0000~0x0003 FFFF

SRAM: 0x2000 0000~ 0x20003FFF

17.1.1. Debugging the entire program in RAM

Requirement: The debugged program must be smaller than the size of RAM.

Purpose: Divide the SRAM into two parts, put the entire program in the first half of the
SRAM to run, and store variables in the second half.

step:

1. Add the Debug initialization file in the project directory and save it as "run_in_ram.ini".
The file is in plain ASCII text format and reads

FUNC void Setup (void) {

SP = _RDWORD(0x20000000);

PC = _RDWORD(0x20000004);

_WDWORD(0xE000ED08, 0x20000000);

}

FUNC void OnResetExec (void) {

Setup();

}

load %L incremental

Setup();

g, main

Statement description:

SP=_RDWORD(0x20000000): read 1 word from 0x20000000 and send it to SP

PC=_RDWORD(0x20000004): read 1 word from 0x20000004 and send it to PC

_WDWORD(0xE000ED08,0x20000000): Set the start address of the interrupt vector table

OnResetExec(); This function is called when the RESET button is pressed

Load %L incremental : Add the debugging information of the file, %L represents the Output
file of the Link

g, main means to execute to the main function

**The statement outside the function is called when entering debug.

 SH30F9/SB0 Series User Guide

 55

2. Modify the IROM settings and adjust the RAM settings as follows

3. Modify the DEBUG option as follows: Add the previously saved run_in_ram.ini to the
Initialization File

 SH30F9/SB0 Series User Guide

 56

4. Modify the Utilities options as follows: Cancel Update Target before Debugging

5. Modify the Flash Download settings as follows

6. Press the Debug button directly after rebuilding the project. There will be a warning "No
Flash operation", click OK

 SH30F9/SB0 Series User Guide

 57

7. Already running normally in RAM. As shown below

Precautions:

You cannot use the RESET button to reset, you must exit Debug and enter again. Because
after reset, the SP will be taken from the position of Code area 0, and the PC will be taken
from the position of 4.

The program must relocate the location of the interrupt vector table to 0X20000000,
otherwise the interrupt or exception cannot be correctly located.

17.1.2. Put the critical program into RAM to run

Requirement: The program that needs to run in RAM must be smaller than the size of RAM.

 SH30F9/SB0 Series User Guide

 58

Purpose: Improve the running speed of key code

step:

1. Put the functions that need to be run in RAM into a file, and add the compiler instructions
that define the section at the front. (The section name can be defined by yourself) as shown
in the figure:

2. Add Link control file ramcode.sct. as shown in the picture

3. Set the Link option, as shown in the figure

 SH30F9/SB0 Series User Guide

 59

4. Modify the Flash Download settings as follows

5. After rebuilding the project, press the Download button to download the program, and
then press the Enter Debug button to enter the Debug interface. Run to the place where the
function is called and you can see that it is running in Flash

 SH30F9/SB0 Series User Guide

 60

6. After running Step Into, you can see that it has jumped to RAM1.

7. Run Step Out again, you can see that it jumps back to the Flash area

 SH30F9/SB0 Series User Guide

 61

17.1.3. Fix a function to a certain position

1. Give the function a section name

You can also use #pragma arm section code=”XNTEST1” to define a section with the same
name for all functions in the entire file.

2. Specify the address in the scatter file

 SH30F9/SB0 Series User Guide

 62

As shown in the figure, the function OutputInfo1 is fixed at the position of 0x20000
As shown in the figure, the function OutputInfo2 is fixed at the position of 0x30000

17.2. Appendix 2: Automatically export similar data into a table

17.2.1. Define an output macro

E.g:

#define SECTION(x) __attribute__((section(x)))

#define RT_USED __attribute__((used))

typedef int (*drv_func) (void* param);

struct func_item{

 drv_func func;

 const char* desc;

};

#define EXPORT_FUNC_TABLE(name,desc) const char _drv_##name##_desc[] = #desc; \

 const struct func_item _drv_##name##_cmd SECTION("MySymTab") = \

 { \

 (drv_func)&name, \

 drv##name##_desc \

 };

17.2.2. Export call function

Call this macro where you need to export

E.g:

static int func1 (void* param)

{

 return 3;

}

 SH30F9/SB0 Series User Guide

 63

EXPORT_FUNC_TABLE(func1, func desp1);

static int func2 (void* param)

{

 return 1;

}

EXPORT_FUNC_TABLE(func2, func desp2);

static int func3 (void* param)

{

 return 0;

}

EXPORT_FUNC_TABLE(func3, func desp3);

static int func4(void* param)

{

 return 5;

}

EXPORT_FUNC_TABLE(func4, func desp3);

17.2.3. Table lookup method

**Note: In KEIL MDK, the header logo MySymTab$$Base and the tail logo
MySymTab$$Limit will be automatically added

void my_func(void)

{

 struct func_item *ps;

 struct func_item *pe;

 extern const int MySymTab$$Base;

 extern const int MySymTab$$Limit;

 ps = (struct func_item*) MySymTab$$Base;

 pe = (struct func_item*) MySymTab$$Limit;

 while(ps != pe)

 {

 ps->func(0);

 ps++;

 }

}

 SH30F9/SB0 Series User Guide

 64

17.3. Appendix 3: Fixing variables to a location in RAM

17.3.1. Specify the address directly at the variable definition

uint32_t g_var1 __attribute__((at(0x20000000))) = 0x33445566;

uint32_t g_var2 __attribute__((at(0x20000004)));

17.3.2. Specify the section directly in the variable definition

Specify the section at the variable definition, and then use the linker's scatter file to fix this
section to a certain position:

uint32_t g_fvar1 __attribute__((section(".fixed1"))) = 0x12345678; /* RW */

uint32_t g_fvar2 __attribute__((section(".fixed1"))) = 0x87654321; /* RW */

uint32_t g_fvar3 __attribute__((section(".fixed1"))) = 0x87654321; /* RW */

uint32_t g_fixed1 __attribute__ ((section(".fixed_var")));

Define variables g_fvar1, g_fvar2, and g_fvar3 to belong to section ".fixed1", and variable
g_fixed1 to belong to section ".fixed_var".

Then define it in the scatter file as follows:
 RAM_IRAM_1 0X20000400 0x0000400{

 *(.fixed_var);

 }

 RAM_IRAM_2 0X20000800 0x0000400{

 *(.fixed1);

 }

The variable in Section ".fixed_var" is defined to the starting position of 0x20000400
The variables in Section ". fixed1" are defined to the starting position of 0x20000800

17.3.3. Specify all variables in the file to a fixed location

Define the section in the source file header, and the attribute is rwdata.
#pragma arm section rwdata=".fixed_var"

#pragma arm section zidata=".fixed_var"

uint32_t g_fixed1;

uint32_t g_fixed2;

Then define it in the scatter file as follows
RAM_IRAM_1 0X20000400 0x0000400{

 *(.fixed_var);

}

The variable in Section ".fixed_var" is defined to the starting position of 0x20000400

17.4. Appendix 4: SH30F9010 Function Boardschematic diagram

 SH30F9/SB0 Series User Guide

 65

 SH30F9/SB0 Series User Guide

 66

17.5. Appendix 5:SH30F9010 Function Board

SH30F9010 provides a set of demonstration boards for customers to familiarize

themselves with chip functions. As shown in the following figure:

SH30F9010 Function Board

Function description of each part in the board:

A. Power light

B. Reset button

C. SinoLink-Mini Debugger interface

The SinoLink Mini onboard debugger uses a USB Type-C interface, which enables

onboard burning and simulation. Select CMSIS-DAP in the simulator configuration

interface, and like jlink, add a burning algorithm file.

D. External power supply interface (VDD/GND)

Function Board power supply interface, connected to the VDD and GND pins of

the chip respectively. Choose external power supply, the chip power supply

voltage can be adjusted.

E. Serial port

 SH30F9/SB0 Series User Guide

 67

Using USB Type-C to connect with PC. Connect the UART to the MCU's UART2

(TXD2<->PB6, RXD2<->PB7) via USB to serial chip for UART debugging.

Note: The power supply of the demonstration board can be provided by an

external power interface, USB interface, or simulation interface. Regardless of

which power supply method is used, the voltage at the external power interface is

the power supply voltage of the demonstration board.

F. Current testing interface. (Do not conduct current testing, please connect with a

short-circuit jumper)

G. Jumper cap (UART PIN)

When PB6 and PB7 are used as UART2, the left two jumper caps are short

circuited to form a USB to serial port circuit with the E part on the board; When

PB6 and PB7 are used as IO, short-circuit the two on the right side of the jumper

cap and disconnect it from the external USB to serial port circuit.

H. Jumper cap（CRY）

When PA10 and PA11 are used as Crystal PINs, short-circuit the left two jumper

caps to connect to the external crystal oscillator. When PA10 and PA11 are used

as IO, short-circuit the right two jumper caps to disconnect from the external crystal

oscillator.

I. SWD Debugger interface

The SWD simulation interface can be connected to the VDD, SWDIO, SWCLK,

RST, and GND of Jlink or SinoLink simulators using DuPont wires for downloading

simulations. The power supply for the demonstration board can be obtained

through the VDD pin of the simulation interface.

	SH30F9/SB0 Series User Guide
	Specification change record
	Documentation Instructions
	1. RAM
	1.1. Overview
	1.2. Programming Setting

	2. NVIC
	2.1. Overview
	2.2. Programming Setting
	2.2.1. Interrupt configuration basis
	2.2.2. Enable and disable interrupt
	2.2.3. Interrupt pending and releasing
	2.2.4. Interrupt priority
	2.2.5. Interrupt / fault response sequence
	2.2.6. Interrupt / fault return
	2.2.7. Nested interrupts
	2.2.8. Tail interrupt
	2.2.9. Late interrupt

	3. Power, clock and reset
	3.1. Overview
	3.2. Programming Setting
	3.2.1. Power
	3.2.2. Clock
	3.2.3. Reset

	4. GPIO
	4.1. Overview
	4.1.1. GPIO mode
	4.1.2. Multiplexing for digital peripherals
	4.1.3. Multiplexing for analog peripherals
	4.1.4. Full close mode
	4.1.5. Debug interface
	4.1.6. Other notes

	5. Flash&EEPROM
	5.1. Overview
	5.2. Programming Setting
	5.2.1. Flash Control Register Unlocking
	5.2.2. Flash operation timer function
	5.2.3. Flash(E2\OTP) Erasing and Programming
	5.2.4. Flashcontrol register locking

	5.3. Flash (E2\OTP) erase programming flow chart
	5.3.1. Mass erase of main program area
	5.3.2. Main program area sector erase
	5.3.3. Main program area programming
	5.3.4. EEPROM-like memory area erase programming
	5.3.5. OTP area programming

	5.4. Anti-interference measures for programming/erasing

	6. CRC
	6.1. Overview
	6.2. Programming Setting
	6.2.1. Generating polynomials
	6.2.2. Input data processing
	6.2.3. Result processing
	6.2.4. Operation trigger
	6.2.5. Result obtaining

	7. WDT
	7.1. HWDT
	7.1.1. Overview
	7.1.2. HWDT Programming Setting
	7.1.3. HWDT Application examples

	7.2. WWDT
	7.2.1. Overview
	7.2.2. WWDT Programming Setting
	7.2.3. WWDT application examples

	8. EXTI
	8.1. Overview
	8.2. Programming Setting
	8.2.1. Edge trigger mode selection
	8.2.2. Software triggered interrupt
	8.2.3. External interrupt line selection
	8.2.4. Matters needing attention

	9. System configuration module (SYSCFG)
	9.1. Overview
	9.2. Programming Setting
	9.2.1. BOD
	9.2.2. LVR
	9.2.3. NMI interrupt switch
	9.2.4. Crystal oscillator pins are used as GPIO
	9.2.5. Simulation pins are used as GPIO
	9.2.6. The peripherals run in debug mode
	9.2.7. Low-power consumption mode

	10. PCA
	10.1. Overview
	10.2. Programming Setting
	10.2.1. IO setting
	10.2.2. Clock setting
	10.2.3. PCA count mode setting
	10.2.4. PCA mode setting
	10.2.5. Matters needing attention

	11. PWM
	11.1. Overview
	11.2. Programming Setting
	11.2.1. IO setting
	11.2.2. Protection setting
	11.2.3. Module setting
	11.2.4. Matters needing attention

	12. ADC
	12.1. Overview
	12.2. Programming Setting
	12.2.1. ADC clock setting
	12.2.2. ADC channel IO port function setting
	12.2.3. ADC sampling rate configuration
	12.2.4. ADC conversion mode configuration
	12.2.4.1. Single Conversion
	12.2.4.2. Intermittent Conversion
	12.2.4.3. Continuous Conversion

	12.3. Matters needing attention

	13. TIMER
	13.1. Overview
	13.2. Programming Setting
	13.2.1. Basic timing application
	13.2.2. Square wave with adjustable output frequency
	13.2.3. Matters needing attention

	14. UART
	14.1. Overview
	14.2. Programming Setting
	14.2.1. Sending
	14.2.2. Receiving
	14.2.3. IO setting
	14.2.4. LIN mode
	14.2.5. Interrupt
	14.2.6. Parity check
	14.2.7. Error flag
	14.2.8. Other notes

	15. SPI
	15.1. Overview
	15.2. Programming Setting
	15.2.1. Sending
	15.2.2. Reveiving
	15.2.3. IO setting
	15.2.4. Fast slave mode
	15.2.5. Intterupt
	15.2.6. Error flag

	16. TWI
	16.1. Overview
	16.2. TWI bus setting
	16.2.1. I/O setting
	16.2.2. Baud rate configuration
	16.2.3. Communication address configuration

	16.3. Four basic communication modes
	16.4. TWI Interrupt and timeout

	17. Aappendix
	17.1. Aappendix 1：Function location and debugging method in KEIL MDK
	17.1.1. Debugging the entire program in RAM
	17.1.2. Put the critical program into RAM to run
	17.1.3. Fix a function to a certain position

	17.2. Appendix 2: Automatically export similar data into a table
	17.2.1. Define an output macro
	17.2.2. Export call function
	17.2.3. Table lookup method

	17.3. Appendix 3: Fixing variables to a location in RAM
	17.3.1. Specify the address directly at the variable definition
	17.3.2. Specify the section directly in the variable definition
	17.3.3. Specify all variables in the file to a fixed location

	17.4. Appendix 4: SH30F9010 Function Boardschematic diagram
	17.5. Appendix 5:SH30F9010 Function Board

